Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The aim of this research was to simulate the future water balance of the Silwani watershed, Jharkhand, India, under the combined effect of land use and climate change based on the Soil and Water Assessment Tool (SWAT) and Cellular Automata (CA)-Markov Chain model. The future climate prediction was done based on daily bias-corrected datasets of the INMCM5 climate model with Shared Socioeconomic Pathway 585 (SSP585), which represent the fossil fuel development of the world. After a successful model run, water balance components like surface runoff, groundwater contribution to stream flow, and ET were simulated. The anticipated change in land use/land cover (LULC) between 2020 and 2030 reflects a slight increase (3.9 mm) in groundwater contribution to stream flow while slight decrease in surface runoff (4.8 mm). The result of this research work helps the planners to plan any similar watershed for future conservation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-27547-4 | DOI Listing |