A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

K-UNN: k-space interpolation with untrained neural network. | LitMetric

K-UNN: k-space interpolation with untrained neural network.

Med Image Anal

Research Center for Medical AI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Pazhou Lab, Guangzhou, Guangdo

Published: August 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recently, untrained neural networks (UNNs) have shown satisfactory performances for MR image reconstruction on random sampling trajectories without using additional full-sampled training data. However, the existing UNN-based approaches lack the modeling of physical priors, resulting in poor performance in some common scenarios (e.g., partial Fourier (PF), regular sampling, etc.) and the lack of theoretical guarantees for reconstruction accuracy. To bridge this gap, we propose a safeguarded k-space interpolation method for MRI using a specially designed UNN with a tripled architecture driven by three physical priors of the MR images (or k-space data), including transform sparsity, coil sensitivity smoothness, and phase smoothness. We also prove that the proposed method guarantees tight bounds for interpolated k-space data accuracy. Finally, ablation experiments show that the proposed method can characterize the physical priors of MR images well. Additionally, experiments show that the proposed method consistently outperforms traditional parallel imaging methods and existing UNNs, and is even competitive against supervised-trained deep learning methods in PF and regular undersampling reconstruction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.media.2023.102877DOI Listing

Publication Analysis

Top Keywords

physical priors
12
proposed method
12
k-space interpolation
8
untrained neural
8
priors images
8
k-space data
8
experiments proposed
8
k-unn k-space
4
interpolation untrained
4
neural network
4

Similar Publications