A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Evaluating the influence of anatomical accuracy and electrode positions on EEG forward solutions. | LitMetric

Evaluating the influence of anatomical accuracy and electrode positions on EEG forward solutions.

Neuroimage

Department of Applied Mathematics and Computer Science, Technical University of Denmark, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Denmark.

Published: August 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Generating realistic volume conductor models for forward calculations in electroencephalography (EEG) is not trivial and several factors contribute to the accuracy of such models, two of which are its anatomical accuracy and the accuracy with which electrode positions are known. Here, we investigate effects of anatomical accuracy by comparing forward solutions from SimNIBS, a tool which allows state-of-the-art anatomical modeling, with well-established pipelines in MNE-Python and FieldTrip. We also compare different ways of specifying electrode locations when digitized positions are not available such as transformation of measured positions from standard space and transformation of a manufacturer layout. Substantial effects of anatomical accuracy were seen throughout the entire brain both in terms of field topography and magnitude with SimNIBS generally being more accurate than the pipelines in MNE-Python and FieldTrip. Topographic and magnitude effects were particularly pronounced for MNE-Python which uses a three-layer boundary element method (BEM) model. We attribute these mainly to the coarse representation of the anatomy used in this model, in particular differences in skull and cerebrospinal fluid (CSF). Effects of electrode specification method were evident in occipital and posterior areas when using a transformed manufacturer layout whereas transforming measured positions from standard space generally resulted in smaller errors. We suggest modeling the anatomy of the volume conductor as accurately possible and we hope to facilitate this by making it easy to export simulations from SimNIBS to MNE-Python and FieldTrip for further analysis. Likewise, if digitized electrode positions are not available, a set of measured positions on a standard head template may be preferable to those specified by the manufacturer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2023.120259DOI Listing

Publication Analysis

Top Keywords

anatomical accuracy
16
electrode positions
12
mne-python fieldtrip
12
measured positions
12
positions standard
12
accuracy electrode
8
forward solutions
8
volume conductor
8
effects anatomical
8
pipelines mne-python
8

Similar Publications