Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Mitochondria-endoplasmic reticulum (ER) communication relies on platforms formed at the ER membrane with the mitochondrial outer membrane contact sites (MERCs). MERCs are involved in several processes including the unfolded protein response (UPR) and calcium (Ca) signaling. Therefore, as alterations in MERCs greatly impact cellular metabolism, pharmacological interventions to preserve productive mitochondrial-ER communication have been explored to maintain cellular homeostasis. In this regard, extensive information has documented the beneficial and potential effects of sulforaphane (SFN) in different pathological conditions; however, controversy has arisen regarding the effect of this compound on mitochondria-ER interaction. Therefore, in this study, we investigated whether SFN could induce changes in MERCs under normal culture conditions without damaging stimuli. Our results indicate that non-cytotoxic concentration of 2.5 μM SFN increased ER stress in cardiomyocytes in conjunction with a reductive stress environment, that diminishes ER-mitochondria association. Additionally, reductive stress promotes Ca accumulation in the ER of cardiomyocytes. These data show an unexpected effect of SFN on cardiomyocytes grown under standard culture conditions, promoted by the cellular redox unbalance. Therefore, it is necessary to rationalize the use of compounds with antioxidant properties to avoid triggering cellular side effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbi.2023.110616 | DOI Listing |