98%
921
2 minutes
20
Compressed sensing (CS) has been used to improve image quality in single-photon emission tomography (SPECT) imaging. However, the effects of CS on image quality parameters in myocardial perfusion imaging (MPI) have not been investigated in detail. This preliminary study aimed to compare the performance of CS-iterative reconstruction (CS-IR) with filtered back-projection (FBP) and maximum likelihood expectation maximization (ML-EM) on their ability to reduce the acquisition time of MPI. A digital phantom that mimicked the left ventricular myocardium was created. Projection images with 120 and 30 directions (360°), and with 60 and 15 directions (180°) were generated. The SPECT images were reconstructed using FBP, ML-EM, and CS-IR. The coefficient of variation (CV) for the uniformity of myocardial accumulation, septal wall thickness, and contrast ratio (Contrast) of the defect/normal lateral wall were calculated for evaluation. The simulation was performed ten times. The CV of CS-IR was lower than that of FBP and ML-EM in both 360° and 180° acquisitions. The septal wall thickness of CS-IR at the 360° acquisition was inferior to that of ML-EM, with a difference of 2.5 mm. Contrast did not differ between ML-EM and CS-IR for the 360° and 180° acquisitions. The CV for the quarter-acquisition time in CS-IR was lower than that for the full-acquisition time in the other reconstruction methods. CS-IR has the potential to reduce the acquisition time of MPI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12194-023-00730-5 | DOI Listing |
Background: The study aimed to adapt a stress and well-being intervention delivered via a mobile health (mHealth) app for Latinx Millennial caregivers. This demographic, born between 1981 and 1996, represents a significant portion of caregivers in the United States, with unique challenges due to higher mental distress and poorer physical health compared to non-caregivers. Latinx Millennial caregivers face additional barriers, including higher uninsured rates and increased caregiving burdens.
View Article and Find Full Text PDFEur Heart J Cardiovasc Imaging
September 2025
Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
Aims: Fetal circulation undergoes complex changes in congenital heart disease (CHD) that are challenging to assess with fetal echocardiography. This study aimed to assess clinical feasibility and diagnostic value of 4D flow cardiac magnetic resonance (CMR) in fetal CHD.
Methods And Results: Pregnant women in advanced third trimester pregnancy with fetal CHD were prospectively recruited for fetal CMR between 08/2021 and 11/2024.
STAR Protoc
September 2025
Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD, USA. Electronic address:
Tracking the translocation of fluorescent-based reporters at the single-cell level in living mouse embryos requires specialized expertise in mouse embryology and deep computational skills. Here, we detail an approach to quantify cyclin-dependent kinase (CDK) activity levels in single cells throughout different stages of the pre-implantation embryo. We discuss in vitro culture strategies that enable efficient live fluorescent confocal image acquisition and subsequent cell tracking.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
September 2025
Objective: Diffusion magnetic resonance imaging (dMRI) often suffers from low spatial and angular resolution due to inherent limitations in imaging hardware and system noise, adversely affecting the accurate estimation of microstructural parameters with fine anatomical details. Deep learning-based super-resolution techniques have shown promise in enhancing dMRI resolution without increasing acquisition time. However, most existing methods are confined to either spatial or angular super-resolution, disrupting the information exchange between the two domains and limiting their effectiveness in capturing detailed microstructural features.
View Article and Find Full Text PDFmBio
September 2025
Fred Hutchinson Cancer Center, Vaccine and Infectious Disease Division, Seattle, Washington, USA.
Accurate timing estimates of when participants acquire HIV in HIV prevention trials are necessary for determining antibody levels at acquisition. The Antibody-Mediated Prevention (AMP) Studies showed that a passively administered broadly neutralizing antibody can prevent the acquisition of HIV from a neutralization-sensitive virus. We developed a pipeline for estimating the date of detectable HIV acquisition (DDA) in AMP Study participants using diagnostic and viral sequence data.
View Article and Find Full Text PDF