A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Virtual Screening of a Marine Natural Product Database for In Silico Identification of a Potential Acetylcholinesterase Inhibitor. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Alzheimer's disease is characterized by amyloid-beta aggregation and neurofibrillary tangles. Acetylcholinesterase (AChE) hydrolyses acetylcholine and induces amyloid-beta aggregation. Acetylcholinesterase inhibitors (AChEI) inhibit this aggregation by binding to AChE, making it a potential target for the treatment of AD. In this study, we have focused on the identification of potent and safe AChEI from the Comprehensive Marine Natural Product Database (CMNPD) using computational tools. For the screening of CMNPD, a structure-based pharmacophore model was generated using a structure of AChE complexed with the co-crystallized ligand galantamine (PDB ID: 4EY6). The 330 molecules that passed through the pharmacophore filter were retrieved, their drug-likeness was determined, and they were then subjected to molecular docking studies. The top ten molecules were selected depending upon their docking score and were submitted for toxicity profiling. Based on these studies, molecule 64 (CMNPD8714) was found to be the safest and was subjected to molecular dynamics simulations and density functional theory calculations. This molecule showed stable hydrogen bonding and stacked interactions with TYR341, mediated through a water bridge. In silico results can be correlated with in vitro studies for checking its activity and safety in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301296PMC
http://dx.doi.org/10.3390/life13061298DOI Listing

Publication Analysis

Top Keywords

marine natural
8
natural product
8
product database
8
amyloid-beta aggregation
8
subjected molecular
8
virtual screening
4
screening marine
4
database silico
4
silico identification
4
identification potential
4

Similar Publications