Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Spinal Muscular Atrophy (SMA) is the leading genetic cause of infant mortality. The most common form of SMA is caused by mutations in the SMN1 gene, located on 5q (SMA). On the other hand, mutations in IGHMBP2 lead to a large disease spectrum with no clear genotype-phenotype correlation, which includes Spinal Muscular Atrophy with Muscular Distress type 1 (SMARD1), an extremely rare form of SMA, and Charcot-Marie-Tooth 2S (CMT2S). We optimized a patient-derived in vitro model system that allows us to expand research on disease pathogenesis and gene function, as well as test the response to the AAV gene therapies we have translated to the clinic. We generated and characterized induced neurons (iN) from SMA and SMARD1/CMT2S patient cell lines. After establishing the lines, we treated the generated neurons with AAV9-mediated gene therapy (AAV9.SMN (Zolgensma) for SMA and AAV9.IGHMBP2 for IGHMBP2 disorders (NCT05152823)) to evaluate the response to treatment. The iNs of both diseases show a characteristic short neurite length and defects in neuronal conversion, which have been reported in the literature before with iPSC modeling. SMA iNs respond to treatment with AAV9.SMN in vitro, showing a partial rescue of the morphology phenotype. For SMARD1/CMT2S iNs, we were able to observe an improvement in the neurite length of neurons after the restoration of IGHMBP2 in all disease cell lines, albeit to a variable extent, with some lines showing better responses to treatment than others. Moreover, this protocol allowed us to classify a variant of uncertain significance on IGHMBP2 on a suspected SMARD1/CMT2S patient. This study will further the understanding of SMA, and SMARD1/CMT2S disease in particular, in the context of variable patient mutations, and might further the development of new treatments, which are urgently needed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10295315PMC
http://dx.doi.org/10.3390/biology12060867DOI Listing

Publication Analysis

Top Keywords

spinal muscular
12
muscular atrophy
12
sma
8
form sma
8
sma smard1/cmt2s
8
smard1/cmt2s patient
8
cell lines
8
neurite length
8
vitro modeling
4
modeling tool
4

Similar Publications

Spinal muscular atrophy (SMA) types 2 and 3 are chronic neuromuscular disorders characterized by progressive motor impairment. Although disease-modifying therapies such as risdiplam and nusinersen have shown clinical efficacy, real-world data in pediatric populations remain limited. This prospective observational study evaluated motor function outcomes in 20 children with SMA (aged 3 to 13 years; 12 with type 2, 8 with type 3) receiving either risdiplam or nusinersen in Northwestern Iran.

View Article and Find Full Text PDF

Patients with Duchenne muscular dystrophy (DMD) may experience neurobehavioral and cognitive concerns, including psychiatric symptoms, due to the absence of full-length dystrophin (Dp427), frequently accompanied by deficiencies in shorter isoforms. The lack of dystrophin affects neurophysiological processes from the uterine phase, impacting neural circuitry in brain regions such as the prefrontal cortex, hippocampus, and cerebellum. This leads to reduced inhibitory GABAergic transmission and altered hippocampal glutamatergic signaling.

View Article and Find Full Text PDF

Spinal and bulbar muscular atrophy (SBMA) is a CAG/polyglutamine (polyQ) repeat expansion disorder in which the mutant androgen receptor (AR) protein triggers progressive degeneration of the neuromuscular system in men. As the misfolded polyQ AR is the proximal mediator of toxicity, therapeutic efforts have focused on targeting the mutant protein, but these prior efforts have met with limited success in SBMA patients. Here, we examine the efficacy of small molecule AR proteolysis-targeting chimera (PROTAC) degraders that rapidly and potently promote AR ubiquitination and degradation by the proteasome.

View Article and Find Full Text PDF

Monomelic amyotrophy (MMA) is a lower motor neuron predominant disorder affecting an upper limb, which can mimic amyotrophic lateral sclerosis (ALS). It often presents with unilateral, distal upper limb weakness and atrophy, whose trajectory is one of an initial period of progression followed by a prolonged plateau, as opposed to the typically relentless progression as is seen in ALS. This case report describes a novel observation of a patient with MMA with an unexplained ipsilateral partial Horner's syndrome (miosis and ptosis).

View Article and Find Full Text PDF

Movement is executed through balanced excitation-inhibition in spinal motor circuits. Short-term perturbations in one type of neurotransmission are homeostatically counteracted by the opposing type, but prolonged excitation-inhibition imbalance causes dysfunction at both single neuron and circuit levels. However, whether dysfunction in one or both types of neurotransmission leads to pathogenicity in neurodegenerative diseases characterized by select synaptic deficits is not known.

View Article and Find Full Text PDF