A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Glutathione-mediated changes in productivity, photosynthetic efficiency, osmolytes, and antioxidant capacity of common beans () grown under water deficit. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Globally, salinity and drought are severe abiotic stresses that presently threaten vegetable production. This study investigates the potential exogenously-applied glutathione (GSH) to relieve water deficits on plants cultivated in saline soil conditions (6.22 dS m) by evaluating agronomic, stability index of membrane, water satatus, osmolytes, and antioxidant capacity responses. During two open field growing seasons (2017 and 2018), foliar spraying of glutathione (GSH) at 0.5 (GSH) or 1.0 (GSH) mM and three irrigation rates (I = 100%, I = 80% and I = 60% of the crop evapotranspiration) were applied to common bean plants. Water deficits significantly decreased common bean growth, green pods yield, integrity of the membranes, plant water status, SPAD chlorophyll index, and photosynthetic capacity (F/F, PI), while not improving the irrigation use efficiency (IUE) compared to full irrigation. Foliar-applied GSH markedly lessened drought-induced damages to bean plants, by enhancing the above variables. The integrative I + GSH or GSH and I + GSH or GSH elevated the IUE and exceeded the full irrigation without GSH application (I) treatment by 38% and 37%, and 33% and 28%, respectively. Drought stress increased proline and total soluble sugars content while decreased the total free amino acids content. However, GSH-supplemented drought-stressed plants mediated further increases in all analyzed osmolytes contents. Exogenous GSH enhanced the common bean antioxidative machinery, being promoted the glutathione and ascorbic acid content as well as up-regulated the activity of superoxide dismutase, catalase, ascorbate peroxidase, and glutathione peroxidase. These findings demonstrate the efficacy of exogenous GSH in alleviating water deficit in bean plants cultivated in salty soil.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10290831PMC
http://dx.doi.org/10.7717/peerj.15343DOI Listing

Publication Analysis

Top Keywords

gsh gsh
20
gsh
12
common bean
12
bean plants
12
osmolytes antioxidant
8
antioxidant capacity
8
water deficit
8
glutathione gsh
8
water deficits
8
plants cultivated
8

Similar Publications