98%
921
2 minutes
20
Unlabelled: A novel integrated detection system that introduces a paper-chip-based molecular detection strategy into a polydimethylsiloxane (PDMS) microchip and temperature control system was developed for on-site colorimetric detection of DNA. For the paper chip-based detection strategy, a padlock probe DNA (PLP)-mediated rolling circle amplification (RCA) reaction for signal amplification and a radial flow assay according to the Au-probe labeling strategy for visualization were optimized and applied for DNA detection. In the PDMS chip, the reactions for ligation of target-dependent PLP, RCA, and labeling were performed one-step under isothermal temperature in a single chamber, and one drop of the final reaction solution was loaded onto the paper chip to form a radial colorimetric signal. To create an optimal analysis environment, not only the optimization of molecular reactions for DNA detection but also the chamber shape of the PDMS chip and temperature control system were successfully verified. Our results indicate that a detection limit of 14.7 nM of DNA was achieved, and non-specific DNAs with a single-base mismatch at the target DNA were selectively discriminated. This integrated detection system can be applied not only for single nucleotide polymorphism identification, but also for pathogen gene detection. The adoption of inexpensive paper and PDMS chips allows the fabrication of cost-effective detection systems. Moreover, it is very suitable for operation in various resource-limited locations by adopting a highly portable and user-friendly detection method that minimizes the use of large and expensive equipment.
Supplementary Information: The online version contains supplementary material available at 10.1007/s13206-023-00101-7.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10134700 | PMC |
http://dx.doi.org/10.1007/s13206-023-00101-7 | DOI Listing |
BMC Glob Public Health
September 2025
Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme (KWTRP), Kilifi, Kenya.
Background: Between November 2023 and March 2024, coastal Kenya experienced another wave of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections detected through our continued genomic surveillance. Herein, we report the clinical and genomic epidemiology of SARS-CoV-2 infections from 179 individuals (a total of 185 positive samples) residing in the Kilifi Health and Demographic Surveillance System (KHDSS) area (~ 900 km).
Methods: We analyzed genetic, clinical, and epidemiological data from SARS-CoV-2 positive cases across pediatric inpatient, health facility outpatient, and homestead community surveillance platforms.
Neurol Res Pract
September 2025
German Neurological Society, Berlin, Germany.
Background: Recreational nitrous oxide (NO) abuse has become increasingly prevalent, raising concerns about associated health risks. In Germany, the lack of reliable data on NO consumption patterns limits the development of effective public health interventions. This study aims to address this knowledge gap by examining trends, determinants, and health consequences of NO abuse in Germany.
View Article and Find Full Text PDFFluids Barriers CNS
September 2025
Department of Medical Sciences, Neurology, Uppsala University, Uppsala, Sweden.
Background: Idiopathic normal pressure hydrocephalus (iNPH) predominantly manifests with gait disturbances, yet clinical assessments are vulnerable to confirmation bias, particularly post-shunt surgery. Blinded video evaluations are a method to enhance objectivity in gait assessment, but their reliability has never been systematically investigated. The aim was to evaluate the inter-rater reliability of blinded gait assessments in iNPH patients and to investigate how these assessments correlate with the Hellström iNPH scale and patient-reported health status following shunt surgery.
View Article and Find Full Text PDFBMC Oral Health
September 2025
Oral and Maxillofacial Radiology Department, Cairo university, Cairo, Egypt.
Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.
Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.
J Occup Med Toxicol
September 2025
Occupational Medicine, Antioch Medical Center, Kaiser Permanente, 4501 Sand Creek Road, Antioch, CA, 94531, USA.
Background: This study examines trends in delta-9-tetrahydrocannabinol-9-carboxylic acid (THC-COOH) positivity rates in pre-employment urine drug screenings at a single university-based hospital occupational medicine clinic from 2017 to 2022, following California's recreational cannabis legalization in 2016, with sales beginning officially on January 1, 2018.
Methods: Retrospective analysis of 21,546 de-identified urine drug screenings from 2017 to 2022 was conducted. Initial screening used instant urine drug immunoassays (50 ng/mL cutoff for THC-COOH), followed by confirmatory gas chromatography-mass spectrometry (15 ng/mL cutoff).