Aneuploidy Formation in the Filamentous Fungus Aspergillus flavus in Response to Azole Stress.

Microbiol Spectr

Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel.

Published: August 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aspergillus flavus is a mycotoxigenic fungus that contaminates many important agricultural crops with aflatoxin B1, the most toxic and carcinogenic natural compound. This fungus is also the second leading cause of human invasive aspergillosis, after Aspergillus fumigatus, a disease that is particularly prevalent in immunocompromised individuals. Azole drugs are considered the most effective compounds in controlling Aspergillus infections both in clinical and agricultural settings. Emergence of azole resistance in Aspergillus spp. is typically associated with point mutations in orthologs that encode lanosterol 14α-demethylase, a component of the ergosterol biosynthesis pathway that is also the target of azoles. We hypothesized that alternative molecular mechanisms are also responsible for acquisition of azole resistance in filamentous fungi. We found that an aflatoxin-producing A. flavus strain adapted to voriconazole exposure at levels above the MIC through whole or segmental aneuploidy of specific chromosomes. We confirm a complete duplication of chromosome 8 in two sequentially isolated clones and a segmental duplication of chromosome 3 in another clone, emphasizing the potential diversity of aneuploidy-mediated resistance mechanisms. The plasticity of aneuploidy-mediated resistance was evidenced by the ability of voriconazole-resistant clones to revert to their original level of azole susceptibility following repeated transfers on drug-free media. This study provides new insights into mechanisms of azole resistance in a filamentous fungus. Fungal pathogens cause human disease and threaten global food security by contaminating crops with toxins (mycotoxins). Aspergillus flavus is an opportunistic mycotoxigenic fungus that causes invasive and noninvasive aspergillosis, diseases with high rates of mortality in immunocompromised individuals. Additionally, this fungus contaminates most major crops with the notorious carcinogen, aflatoxin. Voriconazole is the drug of choice to treat infections caused by Aspergillus spp. Although azole resistance mechanisms have been well characterized in clinical isolates of Aspergillus fumigatus, the molecular basis of azole resistance in A. flavus remains unclear. Whole-genome sequencing of eight voriconazole-resistant isolates revealed that, among other factors, A. flavus adapts to high concentrations of voriconazole by duplication of specific chromosomes (i.e., aneuploidy). Our discovery of aneuploidy-mediated resistance in a filamentous fungus represents a paradigm shift, as this type of resistance was previously thought to occur only in yeasts. This observation provides the first experimental evidence of aneuploidy-mediated azole resistance in the filamentous fungus A. flavus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10433848PMC
http://dx.doi.org/10.1128/spectrum.04339-22DOI Listing

Publication Analysis

Top Keywords

azole resistance
24
filamentous fungus
16
resistance filamentous
16
aspergillus flavus
12
aneuploidy-mediated resistance
12
resistance
10
azole
9
fungus
8
aspergillus
8
mycotoxigenic fungus
8

Similar Publications

More than a third of patients with glioblastoma experience tumor progression during adjuvant therapy. In this study, we performed a high-throughput drug repurposing screen of FDA-approved agents capable of crossing the blood-brain barrier in order to find agents to counteract acquired or inherent glioma cell resistance to temozolomide-associated cytotoxicity. We identified the cholesterol processing inhibitor, lomitapide, as a potential chemosensitizer in glioblastoma.

View Article and Find Full Text PDF

Background: Invasive mold diseases (IMDs) are a severe complication of immunocompromised subjects and an emerging problem among severely ill, apparently immunocompetent patients. The aim of this study was to describe the epidemiological and clinical features of IMDs in Chile.

Methods: Prospective study of IMD cases in children and adults from 11 reference hospitals in Chile from May 2019 to May 2021.

View Article and Find Full Text PDF

This study assessed the optimum dietary vitamin B requirement of Pacific white shrimp, Penaeus vannamei, for growth, feed efficiency, hemocyte counts, innate immunity, and ammonia stress resistance. Semi-purified experimental diets were prepared by adding vitamin B at 0.0, 0.

View Article and Find Full Text PDF

Background: Cisplatin (DDP) is a clinical first-line chemotherapy drug for hepatocellular carcinoma (HCC), but treatment is often ineffective due to drug resistance. Yes-associated protein 1 (YAP1) is a critical regulator/factor in HCC tumor progression. Our previous research showed that DDP promoted the expression of YAP1 in mice bearing H22 cell in situ liver tumors, which might be related to the poor therapeutic effect of DDP.

View Article and Find Full Text PDF

Shortawn foxtail (Alopecurus aequalis Sobol.) is a challenging weed species to manage in wheat production systems globally. In prior research, we identified a field population of A.

View Article and Find Full Text PDF