Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Developing functionally complex carbon materials from small aromatic molecules requires an understanding of how the chemistry and structure of its constituent molecules evolve and crosslink, to achieve a tailorable set of functional properties. Here, molecular dynamics (MD) simulations are used to isolate the effect of methyl groups on condensation reactions during the oxidative process and evaluate the impact on elastic modulus by considering three monodisperse pyrene-based systems with increasing methyl group fraction. A parameter to quantify the reaction progression is designed by computing the number of new covalent bonds formed. Utilizing the previously developed MD framework, it is found that increasing methylation leads to an almost doubling of bond formation, a larger fraction of the new bonds oriented in the direction of tensile stress, and a higher basal plane alignment of the precursor molecules along the direction of tensile stress, resulting in enhanced tensile modulus. Additionally, via experiments, it is demonstrated that precursors with a higher fraction of methyl groups result in a higher alignment of molecules. Moreover, increased methylation results in the lower spread of single molecule alignment which may lead to smaller variations in tensile modulus and more consistent properties in carbon materials derived from methyl-rich precursors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202302985 | DOI Listing |