A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Effect of Methyl Groups on Formation of Ordered or Layered Graphitic Materials from Aromatic Molecules. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Developing functionally complex carbon materials from small aromatic molecules requires an understanding of how the chemistry and structure of its constituent molecules evolve and crosslink, to achieve a tailorable set of functional properties. Here, molecular dynamics (MD) simulations are used to isolate the effect of methyl groups on condensation reactions during the oxidative process and evaluate the impact on elastic modulus by considering three monodisperse pyrene-based systems with increasing methyl group fraction. A parameter to quantify the reaction progression is designed by computing the number of new covalent bonds formed. Utilizing the previously developed MD framework, it is found that increasing methylation leads to an almost doubling of bond formation, a larger fraction of the new bonds oriented in the direction of tensile stress, and a higher basal plane alignment of the precursor molecules along the direction of tensile stress, resulting in enhanced tensile modulus. Additionally, via experiments, it is demonstrated that precursors with a higher fraction of methyl groups result in a higher alignment of molecules. Moreover, increased methylation results in the lower spread of single molecule alignment which may lead to smaller variations in tensile modulus and more consistent properties in carbon materials derived from methyl-rich precursors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202302985DOI Listing

Publication Analysis

Top Keywords

methyl groups
12
aromatic molecules
8
carbon materials
8
direction tensile
8
tensile stress
8
tensile modulus
8
molecules
5
methyl
4
groups formation
4
formation ordered
4

Similar Publications