Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Prostate-specific membrane antigen (PSMA) positron emission tomography/computed tomography (PET/CT) has emerged as an important imaging technique for prostate cancer. The use of PSMA PET/CT is rapidly increasing, while the number of nuclear medicine physicians and radiologists to interpret these scans is limited. Additionally, there is variability in interpretation among readers. Artificial intelligence techniques, including traditional machine learning and deep learning algorithms, are being used to address these challenges and provide additional insights from the images. The aim of this scoping review was to summarize the available research on the development and applications of AI in PSMA PET/CT for prostate cancer imaging. A systematic literature search was performed in PubMed, Embase and Cinahl according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A total of 26 publications were included in the synthesis. The included studies focus on different aspects of artificial intelligence in PSMA PET/CT, including detection of primary tumor, local recurrence and metastatic lesions, lesion classification, tumor quantification and prediction/prognostication. Several studies show similar performances of artificial intelligence algorithms compared to human interpretation. Few artificial intelligence tools are approved for use in clinical practice. Major limitations include the lack of external validation and prospective design. Demonstrating the clinical impact and utility of artificial intelligence tools is crucial for their adoption in healthcare settings. To take the next step towards a clinically valuable artificial intelligence tool that provides quantitative data, independent validation studies are needed across institutions and equipment to ensure robustness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1053/j.semnuclmed.2023.06.001 | DOI Listing |