Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Wastewater-based epidemiology (WBE) could be useful as an early warning system for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic spread. Viruses are highly diluted in wastewater. Therefore, a virus concentration step is needed for SARS-CoV-2 wastewater detection. We tested the efficiency of three wastewater viral concentration methods: ultrafiltration (UF), electronegative membrane filtration and aluminum hydroxide adsorption-elution. We spiked wastewater with inactivated SARS-CoV-2 and we collected 20 other wastewater samples from five sites in Tunisia. Samples were concentrated by the three methods and SARS-CoV-2 was quantified by reverse transcription digital PCR (RT-dPCR). The most efficient method was UF with a mean SARS-CoV-2 recovery of 54.03 ± 8.25. Moreover, this method provided significantly greater mean concentration and virus detection ability (95%) than the two other methods. The second-most efficient method used electronegative membrane filtration with a mean SARS-CoV-2 recovery of 25.59 ± 5.04% and the least efficient method was aluminum hydroxide adsorption-elution. This study suggests that the UF method provides rapid and straightforward recovery of SARS-CoV-2 in wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wh.2023.264DOI Listing

Publication Analysis

Top Keywords

sars-cov-2 wastewater
12
efficient method
12
viral concentration
8
concentration methods
8
sars-cov-2
8
electronegative membrane
8
membrane filtration
8
aluminum hydroxide
8
hydroxide adsorption-elution
8
sars-cov-2 recovery
8

Similar Publications

Built environment surveillance has shown promise for monitoring COVID-19 burden at granular geographic scales, but its utility for surveillance across larger areas and populations is unknown. Our study aims to evaluate the role of built environment detection of SARS-CoV-2 for the surveillance of COVID-19 across broad geographies and populations. We conducted a prospective city-wide sampling study to examine the relationship between SARS-CoV-2 on floors and COVID-19 burden.

View Article and Find Full Text PDF

Wastewater surveillance of SARS-CoV-2 and influenza in a dynamic university community: understanding how wastewater measurements correspond to reported cases.

Sci Total Environ

September 2025

Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16801, USA. Electronic address:

Wastewater surveillance is increasingly an effective public health tool for responding to epidemics and preparing for annual cycles of respiratory illnesses. We measured genetic markers from Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), influenza A virus (IAV) and influenza B virus (IBV) in untreated wastewater of a university campus and its local residential community over a four-year period using digital Polymerase Chain Reaction (PCR) methods. These data were then analyzed and compared to clinical case data reported to the state by zip code.

View Article and Find Full Text PDF

Following the experience gained during the COVID-19 pandemic, the Belgian Risk Assessment Group (RAG) developed the Respi-Radar in the summer of 2023 to assess the epidemiological situation of respiratory infections and inform public health preparedness and response in Belgium. The Respi-Radar consists of four risk levels (green, yellow, orange and red), which indicate the extent of viral circulation and/or pressure on the healthcare system. Based on these risk levels, authorities can apply adequate measures depending on the epidemiological trends.

View Article and Find Full Text PDF

Strengthening pathogen and antimicrobial resistance surveillance through environmental monitoring in sub-Saharan Africa: stakeholder perspectives.

Int J Hyg Environ Health

September 2025

Microbiology Unit, Finnish Institute for Health, and Welfare, Neulaniementie 4, 70701, Kuopio, Finland; Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, 00014, Helsinki, Finland. Electronic address: tarja.pitkanen@t

Wastewater and environmental surveillance (WES) is an emerging tool for monitoring emergence and trends of waterborne, respiratory, and antimicrobial-resistant (AMR) pathogens. In many developing countries with limited pathogen surveillance systems, WES can complement and support existing monitoring efforts and strengthen pathogen surveillance capacity. This study explored priority pathogens for WES and assessed existing surveillance practices, including WES, in Tanzania, Burkina Faso, and the Democratic Republic of the Congo (DRC).

View Article and Find Full Text PDF