A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Offline Two-dimensional Liquid Chromatography-Mass Spectrometry for Deep Annotation of the Fecal Metabolome. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Compound identification is an essential task in the workflow of untargeted metabolomics since the interpretation of the data in a biological context depends on the correct assignment of chemical identities to the features it contains. Current techniques fall short of identifying all or even most observable features in untargeted metabolomics data, even after rigorous data cleaning approaches to remove degenerate features are applied. Hence, new strategies are required to annotate the metabolome more deeply and accurately. The human fecal metabolome, which is the focus of substantial biomedical interest, is a more complex, more variable, yet lesser-investigated sample matrix compared to widely studied sample types like human plasma. This manuscript describes a novel experimental strategy using multidimensional chromatography to facilitate compound identification in untargeted metabolomics. Pooled fecal metabolite extract samples were fractionated using offline semi-preparative liquid chromatography. The resulting fractions were analyzed by an orthogonal LC-MS/MS method, and the data were searched against commercial, public, and local spectral libraries. Multidimensional chromatography yielded more than a 3-fold improvement in identified compounds compared to the typical single-dimensional LC-MS/MS approach and successfully identified several rare and novel compounds, including atypical conjugated bile acid species. Most features identified by the new approach could be matched to features that were detectable but not identifiable in the original single-dimension LC-MS data. Overall, our approach represents a powerful strategy for deeper annotation of the metabolome that can be implemented with commercially-available instrumentation, and should apply to any dataset requiring deeper annotation of the metabolome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10274728PMC
http://dx.doi.org/10.1101/2023.05.31.543178DOI Listing

Publication Analysis

Top Keywords

untargeted metabolomics
12
fecal metabolome
8
compound identification
8
multidimensional chromatography
8
deeper annotation
8
annotation metabolome
8
metabolome
5
data
5
features
5
offline two-dimensional
4

Similar Publications