Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background/aims: Flagellin, which is abundant in gram-negative bacteria, including , is reported to influence on inflammatory responses in various lung diseases. However, its effect on airway epithelial cells in contribution to asthma pathogenesis is not elucidated yet. We aimed to investigate the effect of TLR5 ligand flagellin on the transcriptomic profile of primary human epithelial cells and to determine the markers of airway inflammation.

Methods: Normal human bronchial epithelial (NHBE) cells were grown and differentiated in air-liquid interface (ALI) culture for 14-16 days. The cells were treated with flagellin at 10 and 100 ng/ml for 3 and 24 h. The conditioned media and cells were harvested to validate inflammatory markers involved in airway inflammation using ELISA, Western blot, and quantitative PCR methods. RNA-sequencing was performed to investigate the transcriptional response to flagellin in ALI-NHBE cells.

Results: Altered transcriptional responses to flagellin in differentiated bronchial epithelial cells were determined, including genes encoding chemokines, matrix metalloproteinases, and antimicrobial biomolecules. Pathway analysis of the transcriptionally responsive genes revealed enrichment of signaling pathways. Flagellin induced the mRNA expressions of proinflammatory cytokines and chemokines, and secretion of GM-CSF, CXCL5, CCL5 and CXCL10. Flagellin enhanced the protein expression of MMP-13 in TGF-β1 and TGF-β2 pretreated cell lysates and Wnt/β-catenin signaling.

Conclusions: These findings suggest that flagellin could be a potent inducer of inflammatory markers that may contribute to airway inflammation and remodeling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10276272PMC
http://dx.doi.org/10.1016/j.waojou.2023.100786DOI Listing

Publication Analysis

Top Keywords

epithelial cells
16
bronchial epithelial
12
inflammatory markers
12
airway inflammation
12
flagellin
9
inflammation remodeling
8
tlr5 ligand
8
ligand flagellin
8
cells
7
airway
5

Similar Publications

Cell type-specific regulatory programs that drive type 1 diabetes (T1D) in the pancreas are poorly understood. Here, we performed single-nucleus multiomics and spatial transcriptomics in up to 32 nondiabetic (ND), autoantibody-positive (AAB), and T1D pancreas donors. Genomic profiles from 853,005 cells mapped to 12 pancreatic cell types, including multiple exocrine subtypes.

View Article and Find Full Text PDF

Hepatocyte apoptosis is a key feature of metabolic dysfunction-associated steatohepatitis (MASH), but the fate of apoptotic hepatocytes in MASH is poorly understood. Here, we explore the hypotheses that clearance of dead hepatocytes by liver macrophages (efferocytosis) is impaired in MASH because of low expression of the efferocytosis receptor T cell immunoglobulin and mucin domain containing 4 (TIM4; gene ) by MASH liver macrophages, which then drives liver fibrosis in MASH. We show that apoptotic hepatocytes accumulate in human and experimental MASH, using mice fed the fructose-palmitate-cholesterol (FPC) diet or the high-fat, choline-deficient amino acid-defined (HF-CDAA) diet.

View Article and Find Full Text PDF

Fanconi Anemia (FA) is a heritable syndrome characterized by DNA damage repair deficits, frequent malformations and a significantly elevated risk of bone marrow failure, leukemia, and mucosal head and neck squamous cell carcinomas (HNSCC). Hematopoietic stem cell gene therapy can prevent marrow failure and lower leukemia risk, but mucosal gene therapy to lower HNSCC risk remains untested. Major knowledge gaps include an incomplete understanding of how rapidly gene-corrected cellular lineages could spread through the oral epithelium, and which delivery parameters are critical for ensuring efficient gene correction.

View Article and Find Full Text PDF

Advanced glycation end products (AGEs) and reactive intermediates, such as methylglyoxal, are formed during thermal processing of foods and have been implicated in the pathogenesis of a series of chronic inflammatory diseases. AGEs are thought to directly interact with the intestinal epithelium upon ingestion of thermally processed foods, but their effects on intestinal epithelial cells are poorly understood. This study investigated transcriptomic changes in human intestinal epithelial FHs 74 Int cells after exposure to AGE-modified human serum proteins (AGE-HS), S100A12, a known RAGE ligand, and unmodified human serum proteins (HS).

View Article and Find Full Text PDF

Dendritic cells (DCs) are potent antigen-presenting cells and play a key role in facilitating the sexual transmission of HIV, functioning as a delivery system responsible for trafficking the virus from exposed barrier sites to their key target cells, CD4 T cells. Although the role of DCs in HIV transmission is well established, the recent advent of high-parameter, single-cell detection technologies, coupled with improved cell isolation techniques, has led to the rapid reclassification of the DC landscape, particularly within human barrier tissues. The identification of new subsets introduces the challenge of incorporating previously understood transmission principles with new, cell-specific, functional nuances to identify the key DCs responsible for facilitating HIV infection.

View Article and Find Full Text PDF