Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Bioink preparation is an important yet challenging step for bioprinting with hydrogels, as it involves fast and homogeneous mixing of various viscous components. In this study, we have developed an automated active mixing platform (AAMP), which allows for high-quality preparation of hydrogel bioinks. The design of AAMP, adapted from syringe pumps, provides many advantages, including low cost, automated control, high precision, customizability, and great cytocompatibility, as well as the potential to intelligently detect the homogeneity. To demonstrate the capability of AAMP, mixing of different hydrogel components, including alginate and xanthan gum with and without Ca, alginate and Laponite, PEGDMA and xanthan gum, was performed to investigate an alginate hydrogel preparation process. Colorimetric analyses were carried out to evaluate the mixing outcome with AAMP. Result showed that AAMP can prepare homogeneous hydrogel mixing in a fast and automated fashion. A multiphysics COMSOL simulation is carried out to further validate the results. Moreover, cell viability and proliferation study were performed in a cell encapsulation mixing experiment to validate the cytocompatibility of the AAMP. The AAMP has demonstrated great capability in hydrogel bioink preparation and could therefore holds great promise and wide applications in bioprinting and tissue engineering.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10261160 | PMC |
http://dx.doi.org/10.18063/ijb.705 | DOI Listing |