Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Artificial structures are an increasingly common feature of coastal marine environments. These structures are poor surrogates of natural rocky shores, and generally support less diverse communities and reduced population sizes. Little is known about sub-lethal effects of such structures in terms of demographic properties and reproductive potential, both of which may influence the dynamics and long-term viability of populations. This study examines the population structure, reproductive states and embryo production of Nucella lapillus populations on artificial structures and natural shores in Ireland and Wales. Population density was measured twice at six natural shores and six artificial structures: once in winter and once in spring. At each sampling, the shell height of 100 individuals from each site was measured. Monthly collections of adult specimens and egg capsules were made at each site from November-January and from March-May, in order to determine sex ratios, reproductive states, and embryo abundances. Artificial structures supported larger individuals and very few juveniles compared to natural shores. Between December and January, natural shores experienced a distinctive pulse in spawning activity followed by a decline in the proportion of females in a reproductive state, whereas on artificial structures the proportion of reproductive females remained relatively stable. Differences observed may be due to a lack of microhabitats on artificial structures, along with subtle variations in structure slope. Eco-engineering interventions, including the addition of refugia such as cracks and crevices, may allow N. lapillus populations on artificial structures to approximate those on natural shores.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marenvres.2023.106059 | DOI Listing |