A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Electrolyte and Additive Engineering for Zn Anode Interfacial Regulation in Aqueous Zinc Batteries. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aqueous Zn-metal batteries (AZMBs) have gained great interest due to their low cost, eco-friendliness, and inherent safety, which serve as a promising complement to the existing metal-based batteries, e.g., lithium-metal batteries and sodium-metal batteries. Although the utilization of aqueous electrolytes and Zn metal anode in AZMBs ensures their improved safety over other metal batteries meanwhile guaranteeing their decent energy density at the cell level, plenty of challenges involved with metallic Zn anode still await to be addressed, including dendrite growth, hydrogen evolution reaction, and zinc corrosion and passivation. In the past years, several attempts have been adopted to address these problems, among which engineering the aqueous electrolytes and additives is regarded as a facile and promising approach. In this review, a comprehensive summary of aqueous electrolytes and electrolyte additives will be given based on the recent literature, aiming at providing a fundamental understanding of the challenges associated with the metallic Zn anode in aqueous electrolytes, meanwhile offering a guideline for the electrolytes and additives engineering strategies toward stable AZMBs in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smtd.202300268DOI Listing

Publication Analysis

Top Keywords

aqueous electrolytes
16
metallic anode
8
electrolytes additives
8
aqueous
6
batteries
6
electrolytes
5
electrolyte additive
4
additive engineering
4
anode
4
engineering anode
4

Similar Publications