98%
921
2 minutes
20
Background: Machine learning is a promising and powerful technology with increasing use in orthopedics. Periprosthetic joint infection following total knee arthroplasty results in increased morbidity and mortality. This systematic review investigated the use of machine learning in preventing periprosthetic joint infection.
Methods: A systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. PubMed was searched in November 2022. All studies that investigated the clinical applications of machine learning in the prevention of periprosthetic joint infection following total knee arthroplasty were included. Non-English studies, studies with no full text available, studies focusing on non-clinical applications of machine learning, reviews and meta-analyses were excluded. For each included study, its characteristics, machine learning applications, algorithms, statistical performances, strengths and limitations were summarized. Limitations of the current machine learning applications and the studies, including their 'black box' nature, overfitting, the requirement of a large dataset, the lack of external validation, and their retrospective nature were identified.
Results: Eleven studies were included in the final analysis. Machine learning applications in the prevention of periprosthetic joint infection were divided into four categories: prediction, diagnosis, antibiotic application and prognosis.
Conclusion: Machine learning may be a favorable alternative to manual methods in the prevention of periprosthetic joint infection following total knee arthroplasty. It aids in preoperative health optimization, preoperative surgical planning, the early diagnosis of infection, the early application of suitable antibiotics, and the prediction of clinical outcomes. Future research is warranted to resolve the current limitations and bring machine learning into clinical settings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10265805 | PMC |
http://dx.doi.org/10.1186/s42836-023-00195-2 | DOI Listing |
J Clin Invest
September 2025
The University of Texas at Austin, Austin, United States of America.
Background: Following SARS-CoV-2 infection, ~10-35% of COVID-19 patients experience long COVID (LC), in which debilitating symptoms persist for at least three months. Elucidating biologic underpinnings of LC could identify therapeutic opportunities.
Methods: We utilized machine learning methods on biologic analytes provided over 12-months after hospital discharge from >500 COVID-19 patients in the IMPACC cohort to identify a multi-omics "recovery factor", trained on patient-reported physical function survey scores.
Proc Natl Acad Sci U S A
September 2025
Max Planck Institute for Solar System Research, Göttingen 37077, Germany.
Turbulent convection governs heat transport in both natural and industrial settings, yet optimizing it under extreme conditions remains a significant challenge. Traditional control strategies, such as predefined temperature modulation, struggle to achieve substantial enhancement. Here, we introduce a deep reinforcement learning (DRL) framework that autonomously discovers optimal control policies to maximize heat transfer in turbulent Rayleigh-Bénard convection.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
September 2025
Division of Plastic and Reconstructive Surgery, Neonatal and Pediatric Craniofacial Airway Orthodontics, Department of Surgery, Stanford University School of Medicine, 770 Welch Road, Palo Alto, CA, 94394, USA.
Background: Alveolar molding plate treatment (AMPT) plays a critical role in preparing neonates with cleft lip and palate (CLP) for the first reconstruction surgery (cleft lip repair). However, determining the number of adjustments to AMPT in near-normalizing cleft deformity prior to surgery is a challenging task, often affecting the treatment duration. This study explores the use of machine learning in predicting treatment duration based on three-dimensional (3D) assessments of the pre-treatment maxillary cleft deformity as part of individualized treatment planning.
View Article and Find Full Text PDFHepatol Int
September 2025
Department of Biomedical Informatics and Data Science, Yale School of Medicine, PO Box 208009, New Haven, CT, 06520-8009, USA.
Int J Cardiovasc Imaging
September 2025
Klinikum Fürth, Friedrich-Alexander-University Erlangen- Nürnberg, Fürth, Germany.
Myocarditis is an inflammation of heart tissue. Cardiovascular magnetic resonance imaging (CMR) has emerged as an important non-invasive imaging tool for diagnosing myocarditis, however, interpretation remains a challenge for novice physicians. Advancements in machine learning (ML) models have further improved diagnostic accuracy, demonstrating good performance.
View Article and Find Full Text PDF