Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: The past decade has seen an explosion of research in causal mediation analysis. However, most analytic tools developed so far rely on frequentist methods which may not be robust in the case of small sample sizes. In this paper, we propose a Bayesian approach for causal mediation analysis based on Bayesian g-formula, which will overcome the limitations of the frequentist methods.
Methods: We created BayesGmed, an R-package for fitting Bayesian mediation models in R. The application of the methodology (and software tool) is demonstrated by a secondary analysis of data collected as part of the MUSICIAN study, a randomised controlled trial of remotely delivered cognitive behavioural therapy (tCBT) for people with chronic pain. We tested the hypothesis that the effect of tCBT would be mediated by improvements in active coping, passive coping, fear of movement and sleep problems. We then demonstrate the use of informative priors to conduct probabilistic sensitivity analysis around violations of causal identification assumptions.
Result: The analysis of MUSICIAN data shows that tCBT has better-improved patients' self-perceived change in health status compared to treatment as usual (TAU). The adjusted log-odds of tCBT compared to TAU range from 1.491 (95% CI: 0.452-2.612) when adjusted for sleep problems to 2.264 (95% CI: 1.063-3.610) when adjusted for fear of movement. Higher scores of fear of movement (log-odds, -0.141 [95% CI: -0.245, -0.048]), passive coping (log-odds, -0.217 [95% CI: -0.351, -0.104]), and sleep problem (log-odds, -0.179 [95% CI: -0.291, -0.078]) leads to lower odds of a positive self-perceived change in health status. The result of BayesGmed, however, shows that none of the mediated effects are statistically significant. We compared BayesGmed with the mediation R- package, and the results were comparable. Finally, our sensitivity analysis using the BayesGmed tool shows that the direct and total effect of tCBT persists even for a large departure in the assumption of no unmeasured confounding.
Conclusion: This paper comprehensively overviews causal mediation analysis and provides an open-source software package to fit Bayesian causal mediation models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10266612 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0287037 | PLOS |