98%
921
2 minutes
20
Selenium (Se) beneficial effect on plants is related to an increase in nitrogen (N) assimilation and its role as an abiotic stress mitigator by reactive oxygen species (ROS) scavenging enhanced by antioxidant metabolism. This study aimed to evaluate sugarcane (Saccharum spp.) growth, photosynthetic and antioxidant responses, and sugar accumulation in response to Se supply. The experimental design was a factorial scheme 2 × 4: two sugarcane varieties (RB96 6928 and RB86 7515) and four Se application rates (0; 5; 10 and 20 μmol L) applied as sodium selenate in the nutrient solution. Leaf Se concentration increased under Se application in both varieties. The enzymes SOD (EC 1.15.1.1) and APX (EC 1.11.1.11) showed increase activities under Se application on variety RB96 6928. Nitrate reductase activity increased in both varieties resulting in the conversion of nitrate into higher total amino acids concentration indicating an enhanced N assimilation. This led to an increased concentration of chlorophylls and carotenoids, increased CO assimilation rate, stomatal conductance, and internal CO concentration. Selenium provided higher starch accumulation and sugar profiles in leaves boosting plant growth. This study shows valuable information regarding the role of Se on growth, photosynthetic process, and sugar accumulation in sugarcane leaves, which could be used for further field experiments. The application rate of 10 μmol Se L was the most adequate for both varieties studied considering the sugar concentration and plant growth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2023.107798 | DOI Listing |
mBio
September 2025
Department of Microbiology & Immunology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.
Fatty acid-binding protein 4 (FABP4) is a cytosolic lipid chaperone predominantly expressed in adipocytes. It has been shown that targets adipose tissues and resides in adipocytes. However, how manipulates adipocytes to redirect nutrients for its benefit remains unknown.
View Article and Find Full Text PDFBiomater Res
September 2025
Laboratory of Medical Imaging, The First People's Hospital of Zhenjiang, Zhenjiang 212001, P. R. China.
Mesoporous metal nanomaterials (MMNs) have gained interest in biomedicine for their unique properties, but their potential is limited by the predominance of spherical shapes and the neglect of morphological effects on biological activity, which hinders the reasonable evaluation of morphology-dependent enzyme-like activities and biological behaviors and its further biomedical applications. It is therefore imperative to find an effective and facile method to design and prepare MMNs with novel, well-defined morphologies. Herein, we fabricated 3 mesoporous platinum nanoenzymes including sphere, rod, and bipyramid topologies [Au@mesoPt sphere, Au@mesoPt rod, and Au@mesoPt bipyramid nanoparticles (NPs), respectively] via a facile atomic layer deposition method using gold NPs (Au NPs) as the templated cores and Pluronic F127 as a structure-directing agent.
View Article and Find Full Text PDFBiomater Res
September 2025
School of Pharmaceutical Sciences & Institute of Materia Medica, State Key Laboratory of Advanced Drug Delivery and Release Systems, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China.
Sepsis-induced liver injury (SILI) is a serious complication of septicemia and contributes to high rates of patient death. SILI is characterized by excessive hepatic reactive oxygen species (ROS) generation, leading to inflammatory response activation and the release of inflammatory mediators that yield liver damage. Efforts to design drugs that can mitigate oxidative stress and inflammatory factor production are thus vital to protecting patients against SILI.
View Article and Find Full Text PDFFood Chem X
August 2025
Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin 300308, China.
In this study, tannic acid (TA) was applied to remodel the structure of quercetin-loaded oat globulin fibrils (UF-Que), to form novel fibril-based composite hydrogels (UF-Que-TA) to encapsulate Que. The hydrogels were prepared by varying the [TA]/[UF] ratio to investigate the impact of TA on gelation behavior, microstructure, molecular interactions, and stability of Que. Physicochemical results indicated that the incorporation of TA significantly enhanced the gel strength and promoted non-covalent interactions including hydrogen bonding, hydrophobic interactions, and ionic interactions.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
August 2025
Institute of Biomedical Sciences, Faculty of Medicine, 8380000 Santiago, Chile.
Acute myocardial infarction (AMI) is one of the main causes of mortality worldwide. Currently, the most effective treatment is percutaneous coronary angioplasty (PCA). However, paradoxically, the restoration of blood flow induces myocardial reperfusion injury (MRI), contributing up to 50% of the final infarct size.
View Article and Find Full Text PDF