98%
921
2 minutes
20
Mesoporous silica engineered nanomaterials are of interest to the industry due to their drug-carrier ability. Advances in coating technology include using mesoporous silica nanocontainers (SiNC) loaded with organic molecules as additives in protective coatings. The SiNC loaded with the biocide 4,5-dichloro-2-octyl-4-isothiazolin-3-one (DCOIT), i.e., SiNC-DCOIT, is proposed as an additive for antifouling marine paints. As the instability of nanomaterials in ionic-rich media has been reported and related to shifting key properties and its environmental fate, this study aims at understanding the behaviour of SiNC and SiNC-DCOIT in aqueous media with distinct ionic strengths. Both nanomaterials were dispersed in (i) low- (ultrapure water-UP) and (ii) high- ionic strength media-artificial seawater (ASW) and f/2 medium enriched in ASW (f/2 medium). The morphology, size and zeta potential (ζP) of both engineering nanomaterials were evaluated at different timepoints and concentrations. Results showed that both nanomaterials were unstable in aqueous suspensions, with the initial ζP values in UP below -30 mV and the particle size varying from 148 to 235 nm and 153 to 173 nm for SiNC and SiNC-DCOIT, respectively. In UP, aggregation occurs over time, regardless of the concentration. Additionally, the formation of larger complexes was associated with modifications in the ζP values towards the threshold of stable nanoparticles. In ASW, SiNC and SiNC-DCOIT formed aggregates (<300 nm) independently of the time or concentration, while larger and heterogeneous nanostructures (>300 nm) were detected in the f/2 medium. The pattern of aggregation detected may increase engineering nanomaterial sedimentation rates and enhance the risks towards dwelling organisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10254789 | PMC |
http://dx.doi.org/10.3390/nano13111738 | DOI Listing |
Toxics
January 2024
Biosciences Institute, Campus of São Vicente, São Paulo State University-UNESP, Praça Infante Dom Henrique, s/n, São Vicente 11330-900, SP, Brazil.
Biocides used in antifouling (AF) paints, such as 4,5-dichlorine-2-n-octyl-4-isothiazole-3-one (DCOIT), can gradually leach into the environment. Some AF compounds can persist in the marine environment and cause harmful effects to non-target organisms. Nanoengineered materials, such as mesoporous silica nanocapsules (SiNCs) containing AF compounds, have been developed to control their release rate and reduce their toxicity to aquatic organisms.
View Article and Find Full Text PDFNanomaterials (Basel)
May 2023
CESAM-Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
Mesoporous silica engineered nanomaterials are of interest to the industry due to their drug-carrier ability. Advances in coating technology include using mesoporous silica nanocontainers (SiNC) loaded with organic molecules as additives in protective coatings. The SiNC loaded with the biocide 4,5-dichloro-2-octyl-4-isothiazolin-3-one (DCOIT), i.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
April 2022
CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
Recent advances in nanotechnology have allowed the encapsulation of hazardous antifouling (AF) biocides in silica mesoporous nanocapsules (SiNC) reducing their short-term toxicity. However, the chronic effects of such novel nanoadditives remain understudied. The present study aimed to assess short- and long-term sub-lethal effects of soluble forms (DCOIT and Ag) and nanostructured forms (SiNC-DCOIT and SiNC-DCOIT-Ag) of two AF biocides and the "empty" nanocapsule (SiNC) on juveniles of Crassostrea gigas after 96 h and 14 days of exposure.
View Article and Find Full Text PDFMar Pollut Bull
March 2021
Biology Institute, Federal University of Uberlândia, R. Ceará s/n Bloco 2D sala 28, 38405-302, Uberlândia, Minas Gerais, Brazil. Electronic address:
This study aimed to investigate the toxicity of innovative antifouling nanostructured biocides DCOIT and silver associated to silica nanocapsules (SiNC) on the tropical microcrustacean Mysidopsis juniae. The toxicity of the tested compounds can be summarized as follows (acute tests): DCOIT > SiNC-Ag > SiNC-DCOIT > SiNC-DCOIT-Ag > SiNC > Ag; (chronic tests): SiNC-Ag > SiNC-DCOIT-Ag > DCOIT > Ag > SiNC, although it was not possible to determine the chronic toxicity of SiNC-DCOIT. In general, our data demonstrated that mysids were more sensitive than most temperate species, and it was possible to conclude that the combination SiNC-DCOIT-Ag showed less acute toxicity in comparison to the isolated active compounds, reinforcing data obtained for species from temperate environments on the potential use of nanomaterial to reduce toxicity to non-target species.
View Article and Find Full Text PDF