Fermentation-Derived Albumin-Based Hydrogels for Tissue Adhesion Applications.

Polymers (Basel)

Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Viale J.F. Kennedy 54, 80125 Naples, Italy.

Published: May 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Currently, most of the clinically available surgical glues and sealants lack elasticity, good adhesion and biocompatibility properties. Hydrogels as tissue adhesives have received extensive attention for their tissue-mimicking features. Here, a novel surgical glue hydrogel based on a fermentation-derived human albumin (rAlb) and biocompatible crosslinker for tissue-sealant applications has been developed. In order to reduce the risks of viral transmission diseases and an immune response, Animal-Free Recombinant Human Albumin from the saccharomyces yeast strain was used. A more biocompatible crosslinking agent, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), was used and compared with glutaraldehyde (GA). The design of crosslinked albumin-based adhesive gels was optimized by varying the albumin concentration, the mass ratio between albumin and the crosslinking agent as well as the crosslinker type. Tissue sealants were characterized in terms of mechanical (tensile and shear), adhesive and in vitro biocompatibility properties. The results indicated that the mechanical and adhesive properties improved as the albumin concentration increased and the mass ratio between albumin and crosslinker decreased. Moreover, the EDC-crosslinked albumin gels have better biocompatibility properties than GA-crosslinked glues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255640PMC
http://dx.doi.org/10.3390/polym15112530DOI Listing

Publication Analysis

Top Keywords

biocompatibility properties
12
hydrogels tissue
8
human albumin
8
crosslinking agent
8
albumin concentration
8
mass ratio
8
ratio albumin
8
albumin
7
fermentation-derived albumin-based
4
albumin-based hydrogels
4

Similar Publications

Wearable bioelectronics for skin cancer management.

Biomaterials

August 2025

Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA. Electronic address:

Wearable bioelectronics have transformed modern biomedical applications by enabling seamless integration with biological tissues, providing continuous, comprehensive, and personalized healthcare. Skin cancer, particularly melanoma, poses a significant clinical challenge due to its high metastatic potential and associated mortality. Traditional diagnostic approaches face limitations in accuracy, accessibility, and reproducibility, while existing treatments are often constrained by systemic toxicity and therapeutic resistance.

View Article and Find Full Text PDF

Nimodipine (NMP), a poorly water-soluble small-molecule agent, demonstrates notable therapeutic limitations in addressing cerebral vasospasm secondary to subarachnoid hemorrhage (SAH). Owing to its inherent physicochemical properties characterized by low oral bioavailability, rapid elimination half-life, and extensive first-pass metabolism, conventional formulations necessitate frequent dosing regimens to sustain therapeutic plasma concentrations. These pharmacological challenges collectively result in suboptimal patient adherence, marked plasma concentration fluctuations, and recurrent vascular irritation.

View Article and Find Full Text PDF

Wounds with extensive tissue damage are highly susceptible for microbial infections delaying the process of wound healing. Currently, biomaterials with therapeutic molecules emerged as key players in wound repairing. This work developed a novel collagen-based hydrogel loaded with allicin and silver nanoparticles.

View Article and Find Full Text PDF

Cell and Hydrogel-Integrated Therapies for Intervertebral Disc Regeneration.

Adv Healthc Mater

September 2025

Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA.

Intervertebral disc degeneration (IDD) is a major cause of low back pain (LBP), significantly affecting on global disability and healthcare costs. Traditional treatments primarily focus on symptom management rather than addressing the underlying causes, such as the decline in nucleus pulposus (NP) cells and reduced extracellular matrix (ECM) synthesis. Cell therapy shows promise by replenishing NP cells, activating resident cells, and enhancing ECM deposition.

View Article and Find Full Text PDF

Boron nitride quantum dots combine several unique properties, including chemical stability, biocompatibility, and low cytotoxicity. These properties and tunable optical characteristics make them promising for use in boron neutron capture therapy simultaneously as therapeutic agents and fluorescent markers for cancer cells. In this paper we present a case study, in which the electronic structure of these dots is analyzed using DFT and TD-DFT methods providing a deeper understanding of their absorption properties.

View Article and Find Full Text PDF