Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Metastatic brain disease (MBD) has seen major advances in clinical management, focal radiation therapy approaches and knowledge of biological factors leading to improved prognosis. Extracellular vesicles (EVs) have been found to play a role in tumor cross-talk with the target organ, contributing to the formation of a premetastatic niche. Human lung and breast cancer cell lines were characterized for adhesion molecule expression and used to evaluate their migration ability in an in vitro model. Conditioned culture media and isolated EVs, characterized by super resolution and electron microscopy, were tested to evaluate their pro-apoptotic properties on human umbilical vein endothelial cells (HUVECs) and human cerebral microvascular endothelial cells (HCMEC/D3) by annexin V binding assay. Our data showed a direct correlation between expression of ICAM1, ICAM2, β3-integrin and α2-integrin and the ability to firmly adhere to the blood-brain barrier (BBB) model, whereas the same molecules were down-regulated at a later step. Extracellular vesicles released by tumor cell lines were shown to be able to induce apoptosis in HUVEC while brain endothelial cells showed to be more resistant.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10252721PMC
http://dx.doi.org/10.3390/cancers15113045DOI Listing

Publication Analysis

Top Keywords

extracellular vesicles
12
endothelial cells
12
vitro model
8
blood-brain barrier
8
cell lines
8
role adhesion
4
adhesion molecules
4
molecules extracellular
4
vesicles vitro
4
model blood-brain
4

Similar Publications

Correction: Therapeutic potential of NGF-enriched extracellular vesicles in modulating neuroinflammation and enhancing peripheral nerve remyelination.

Acta Neuropathol Commun

September 2025

Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, Seoul, 05029, Republic of Korea.

View Article and Find Full Text PDF

Integrins from extracellular vesicles as players in tumor microenvironment and metastasis.

Cancer Metastasis Rev

September 2025

Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-Sur-Yvette, 91198, France.

Integrins constitute a large and diverse family of cell adhesion molecules that play essential roles in regulating tumor cell differentiation, migration, proliferation, and neovascularization. Tumor cell-derived exosomes, a subtype of extracellular vesicles, are enriched with integrins that reflect their cells of origin. These exosomal integrins can promote extracellular matrix remodeling, immune suppression, and vascular remodeling and are closely linked to tumor progression and metastasis, acting as pivotal players in mediating organ-specific metastasis.

View Article and Find Full Text PDF

Forkhead-box-protein P3 (FOXP3) is a key transcription factor in T regulatory cells (Tregs). However, its expression and significance in non-immune stromal cells in the tumor microenvironment remain unclear. Here, we demonstrated FOXP3 expression in stromal fibroblasts of mouse and human gastrointestinal tumors.

View Article and Find Full Text PDF

The sensing of Gram-negative Extracellular Vesicles (EVs) by the innate immune system has been extensively studied in the past decade. In contrast, recognition of Gram-positive EVs by innate immune cells remains poorly understood. Comparative genome-wide transcriptional analysis in human monocytes uncovered that S.

View Article and Find Full Text PDF

Therapeutic potentials of mesenchymal stem cells and their extracellular vesicles on liver diseases by modulating mitochondrial function of macrophages.

Int Immunopharmacol

September 2025

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China-Singapore Belt and Road Joint Laboratory on Infection Research and Drug Development, National Medical Center for Infectious Diseases, Collaborative Innovation Cen

Macrophages play crucial roles in the progression of liver diseases. Increasing studies have shown that mesenchymal stem cells (MSCs) and their extracellular vesicles (MSC-EVs) could reshape the liver immune microenvironment by regulating the function and phenotype of macrophages, thereby exerting a therapeutic effect on liver diseases. Mitochondria, apart from being the central hub of energy metabolism, also finely regulate macrophage-mediated innate immune responses by modulating reactive oxygen species levels, cell polarization, and cell death.

View Article and Find Full Text PDF