Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Recent advances in targeted covalent inhibitors have aroused significant interest for their potential in drug development for difficult therapeutic targets. Proteome-wide profiling of functional residues is an integral step of covalent drug discovery aimed at defining actionable sites and evaluating compound selectivity in cells. A classical workflow for this purpose is called IsoTOP-ABPP, which employs an activity-based probe and two isotopically labeled azide-TEV-biotin tags to mark, enrich, and quantify proteome from two samples. Here we report a novel isobaric 11plex-AzidoTMT reagent and a new workflow, named AT-MAPP, that significantly expands multiplexing power as compared to the original isoTOP-ABPP. We demonstrate its application in identifying cysteine on- and off-targets using a KRAS G12C covalent inhibitor ARS-1620. However, changes in some of these hits can be explained by modulation at the protein and post-translational levels. Thus, it would be crucial to interrogate site-level bona fide changes in concurrence to proteome-level changes for corroboration. In addition, we perform a multiplexed covalent fragment screening using four acrylamide-based compounds as a proof-of-concept. This study identifies a diverse set of liganded cysteine residues in a compound-dependent manner with an average hit rate of 0.07% in intact cell. Lastly, we screened 20 sulfonyl fluoride-based compounds to demonstrate that the AT-MAPP assay is flexible for noncysteine functional residues such as tyrosine and lysine. Overall, we envision that 11plex-AzidoTMT will be a useful addition to the current toolbox for activity-based protein profiling and covalent drug development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10337260 | PMC |
http://dx.doi.org/10.1021/acs.jproteome.2c00703 | DOI Listing |