Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fire is a major evolutionary and ecological driver that shapes biodiversity in forests. While above-ground community responses to fire have been well-documented, those below-ground are much less understood. However, below-ground communities, including fungi, play key roles in forests and facilitate the recovery of other organisms after fire. Here, we used internal transcribed spacer (ITS) meta-barcoding data from forests with three different times since fire [short (3 years), medium (13-19 years) and long (>26 years)] to characterize the temporal responses of soil fungal communities across functional groups, ectomycorrhizal exploration strategies and inter-guild associations. Our findings indicate that fire effects on fungal communities are strongest in the short to medium term, with clear distinctions between communities in forests with a short time (3 years) since fire, a medium time (13-19 years) and a long time (>26 years) since fire. Ectomycorrhizal fungi were disproportionately impacted by fire relative to saprotrophs, but the direction of the response varied depending on morphological structures and exploration strategies. For instance, short-distance ectomycorrhizal fungi increased with recent fire, while medium-distance (fringe) ectomycorrhizal fungi decreased. Further, we detected strong, negative inter-guild associations between ectomycorrhizal and saprotrophic fungi but only at medium and long times since fire. Given the functional significance of fungi, the temporal changes in fungal composition, inter-guild associations and functional groups after fire demonstrated in our study may have functional implications that require adaptive management to curtail.

Download full-text PDF

Source
http://dx.doi.org/10.1111/mec.17036DOI Listing

Publication Analysis

Top Keywords

inter-guild associations
12
ectomycorrhizal fungi
12
fire
11
times fire
8
13-19 years long
8
fungal communities
8
functional groups
8
exploration strategies
8
fungi
7
ectomycorrhizal
5

Similar Publications

Fire is a major evolutionary and ecological driver that shapes biodiversity in forests. While above-ground community responses to fire have been well-documented, those below-ground are much less understood. However, below-ground communities, including fungi, play key roles in forests and facilitate the recovery of other organisms after fire.

View Article and Find Full Text PDF

Adaptive partner recruitment can help maintain an intra-guild diversity in mutualistic systems.

J Theor Biol

October 2019

Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan. Electronic address:

Mutualisms between assemblages of multiple species or strains (guilds) are considered unstable because of positive feedback between the guilds. Previous studies suggest that negative inter-guild feedback due to asymmetry in the exchange of benefits between the guilds can stabilize them, but preferential association for more beneficial partners may reduce such asymmetry and strengthen the positive inter-guild feedback. Here I develop a replicator dynamics model for mutualistic systems between two host and two symbiont strains to investigate conditions that stabilize mutualisms when feedback between host-symbiont guilds is positive.

View Article and Find Full Text PDF

Co-occurrence between mesopredators can be achieved by differentiation of prey, temporal activity, and spatial habitat use. The study of mesopredator interactions is a growing area of research in tropical forests and shedding new light on inter-guild competition between threatened vertebrate species that were previously little understood. Here, we investigate sympatry between the Sunda clouded leopard (Neofelis diardi) and Asiatic golden cat (Pardofelis temminckii) living in the Sumatran rainforests of Indonesia.

View Article and Find Full Text PDF

Unraveling Saproxylic Insect Interactions in Tree Hollows from Iberian Mediterranean Forest.

Environ Entomol

April 2018

Centro Iberoamericano de la Biodiversidad (CIBIO), Universidad de Alicante, San Vicente del Raspeig, Spain.

Tree hollows are complex microhabitats in which a variety of abiotic and biotic factors shape the community assembly of saproxylic insects. Detecting non-random species co-occurrence patterns is a fundamental goal in ecology in order to understand the assembly mechanisms of communities. We study association patterns of species of Coleoptera and Diptera (Syrphidae), belonging to different trophic guilds, on 72 tree hollows at a local and regional scale in three protected areas in Mediterranean forests using a fixed-fixed null model.

View Article and Find Full Text PDF

To understand how communities function and generate abundance, I develop a framework integrating elements from the stress gradient and resource partitioning concepts. The framework suggests that guild abundance depends on environmental and spatial factors but also on inter-guild interactions (competitor or facilitator richness), which can alter the fundamental niche of constituent species in negative (competition) or positive direction (facilitation). Consequently, the environmental and spatial mechanisms driving guild abundance would differ across guilds and interaction modes.

View Article and Find Full Text PDF