Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Breathing needs to be tightly coordinated with upper airway behaviors, such as swallowing. Discoordination leads to aspiration pneumonia, the leading cause of death in neurodegenerative disease. Here, we study the role of the postinspiratory complex (PiCo) in coordinating breathing and swallowing. Using optogenetic approaches in freely breathing anesthetized ChATcre:Ai32, Vglut2cre:Ai32 and intersectional recombination of ChATcre:Vglut2FlpO:ChR2 mice reveals PiCo mediates airway protective behaviors. Activation of PiCo during inspiration or the beginning of postinspiration triggers swallow behavior in an all-or-nothing manner, while there is a higher probability for stimulating only laryngeal activation when activated further into expiration. Laryngeal activation is dependent on stimulation duration. Sufficient bilateral PiCo activation is necessary for preserving the physiological swallow motor sequence since activation of only a few PiCo neurons or unilateral activation leads to blurred upper airway behavioral responses. We believe PiCo acts as an interface between the swallow pattern generator and the preBötzinger complex to coordinate swallow and breathing. Investigating PiCo's role in swallow and laryngeal coordination will aid in understanding discoordination with breathing in neurological diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10264072PMC
http://dx.doi.org/10.7554/eLife.86103DOI Listing

Publication Analysis

Top Keywords

role postinspiratory
8
postinspiratory complex
8
upper airway
8
activation pico
8
laryngeal activation
8
pico
6
activation
6
breathing
5
swallow
5
complex regulating
4

Similar Publications

Article Synopsis
  • The study investigates how the Kölliker-Fuse/Parabrachial nuclei (KF-PBN) in rats regulates post-inspiratory (post-I) activities that affect respiratory efficiency during normal conditions and acute hypoxemia.
  • When the KF-PBN was inhibited, researchers observed changes such as reduced phrenic nerve activity and abolished post-I vagal responses, indicating its role in managing these respiratory outputs.
  • The findings suggest the KF-PBN is crucial for modulating post-I vagal activity but only partially involved in sympathetic nerve activity, implying multiple neural pathways are at play in respiratory-sympathetic coordination during stress.
View Article and Find Full Text PDF

The sympathetic nervous system modulates arterial blood pressure. Individuals with obstructive sleep apnea (OSA) experience numerous nightly hypoxic episodes and exhibit elevated sympathetic activity to the cardiovascular system leading to hypertension. This suggests that OSA disrupts normal respiratory-sympathetic coupling.

View Article and Find Full Text PDF

Persistent glossopharyngeal nerve respiratory discharge patterns after ponto-medullary transection.

Respir Physiol Neurobiol

September 2024

Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH 44106, USA; Center for Sleep Disorders Research, Louis Stokes Cleveland VA Medical Center and Case Western Reserve Univ

Shape and size of the nasopharyngeal airway is controlled by muscles innervated facial, glossopharyngeal, vagal, and hypoglossal cranial nerves. Contrary to brainstem networks that drive facial, vagal and hypoglossal nerve activities (FNA, VNA, HNA) the discharge patterns and origins of glossopharyngeal nerve activity (GPNA) remain poorly investigated. Here, an in situ perfused brainstem preparation (n=19) was used for recordings of GPNA in relation to phrenic (PNA), FNA, VNA and HNA.

View Article and Find Full Text PDF

Obstructive sleep apnea (OSA) is a prevalent sleep-related breathing disorder that results in multiple bouts of intermittent hypoxia. OSA has many neurological and systemic comorbidities, including dysphagia, or disordered swallow, and discoordination with breathing. However, the mechanism in which chronic intermittent hypoxia (CIH) causes dysphagia is unknown.

View Article and Find Full Text PDF

The pre-Bötzinger complex, situated in the ventrolateral medulla, serves as the central generator for the inspiratory phase of the respiratory rhythm. Evidence strongly supports its pivotal role in generating, and, in conjunction with the post-inspiratory complex and the lateral parafacial nucleus, in shaping the respiratory rhythm. While there remains an ongoing debate concerning the mechanisms underlying these nuclei's ability to generate and modulate breathing, transgenic rodent models have significantly contributed to our understanding of these processes.

View Article and Find Full Text PDF