A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Resilience evaluation for water distribution system based on partial nodes' hydraulic information. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Accurate resilience evaluation for water distribution systems generally requires all nodes' hydraulic data which are usually obtained from a well-calibrated hydraulic model. However, in reality, few utilities maintain a workable hydraulic model, making the resilience evaluation far more from practicability. Under this condition, whether resilience evaluation can be realized based on a small amount of monitoring nodes is still a research gap. Therefore, this paper investigates the possibility of accurate resilience evaluation using partial nodes by answering two problems: (1) whether the importance of nodes differs in resilience evaluation; (2) what proportion of nodes are indispensable in resilience evaluation. Accordingly, the Gini index of nodes' importance and the error distribution of partial node resilience evaluation are computed and analyzed. A database including 192 networks is used. Results show that the importance of nodes in the resilience evaluation varies. The Gini index of nodes' importance is 0.604 ± 0.106. The proportion of nodes that meet the accuracy requirement of resilience evaluation is 6.5% ± 2%. Further analysis shows that the importance of nodes is determined by the transmission efficiency between water sources and consumption nodes, and the degree of a node's influence on other nodes. The optimal proportion of required nodes is controlled by a network's centralization, centrality, and efficiency. These results show that accurate resilience evaluation using partial nodes' hydraulic data is feasible and provide some basis for the resilience evaluation-orientated selection of monitoring nodes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2023.120148DOI Listing

Publication Analysis

Top Keywords

resilience evaluation
44
resilience
12
nodes' hydraulic
12
accurate resilience
12
nodes
11
evaluation
10
evaluation water
8
water distribution
8
partial nodes'
8
hydraulic data
8

Similar Publications