Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Breast cancer is one of the leading causes of cancer deaths in women worldwide. Magnetic fields have shown anti-tumor effects in vitro and in vivo as a non-invasive therapy method that can affect cellular metabolism remotely. Doxorubicin (DOX) is one of the most commonly used drugs for treating breast cancer patients. It can be assumed that combining chemotherapy and magnetotherapy is one of the most effective treatments for breast cancer. This study aimed to investigate the potential cytotoxic effect of DOX at low concentrations in combination with extremely low-frequency electromagnetic fields (ELF-EMF; 50 Hz; 20 mT). The breast cancer cell line MCF-7 was examined for oxidative stress, cell cycle, and apoptosis. MCF-7 cells were treated with various concentrations of DOX as an apoptosis-inducing agent and ELF-EMF. Cytotoxicity was examined using the MTT colorimetric assay at 12, 24, and 48 h. Consequently, concentration- and time-dependent cytotoxicity was observed in MCF-7 cells for DOX within 24 h. The MTT assay results used showed that a 2 μM concentration of DOX reduced cell viability to 50% compared with control, and as well, the combination of ELF-EMF and DOX reduced cell viability to 50% compared with control at > 0.25 μM doses for 24 h. In MCF-7 cells, combining 0.25 μM DOX with ELF-EMF resulted in increased ROS levels and DOX-induced apoptosis. Flow cytometry analysis, on the other hand, revealed enhanced arrest of MCF-7 cells in the G0-G1 phase of the cell cycle, as well as inducing apoptotic cell death in MCF-7 cells, implying that the synergistic effects of 0.25 μM DOX and ELF-EMF may represent a novel and effective agent against breast cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232467PMC
http://dx.doi.org/10.1038/s41598-023-35767-4DOI Listing

Publication Analysis

Top Keywords

breast cancer
20
mcf-7 cells
20
extremely low-frequency
8
low-frequency electromagnetic
8
dox
8
cell cycle
8
dox reduced
8
reduced cell
8
cell viability
8
viability 50%
8

Similar Publications

Purpose: Breast cancer remains a significant public health challenge globally, as well as in India, where it is the most frequently diagnosed cancer in females. Significant disparities in incidence, mortality, and access to health care across India's sociodemographically diverse population highlight the need for increased awareness, policy reform, and research.

Design: This review consolidates data from national cancer registries, global cancer databases, and institutional findings from a tertiary care center to examine the epidemiology, clinical challenges, and management gaps specific to India.

View Article and Find Full Text PDF

ObjectiveTo study the implications of implementing artificial intelligence (AI) as a decision support tool in the Norwegian breast cancer screening program concerning cost-effectiveness and time savings for radiologists.MethodsIn a decision tree model using recent data from AI vendors and the Cancer Registry of Norway, and assuming equal effectiveness of radiologists plus AI compared to standard practice, we simulated costs, effects and radiologist person-years over the next 20 years under different scenarios: 1) Assuming a €1 additional running cost of AI instead of the €3 assumed in the base case, 2) varying the AI-score thresholds for single vs. double readings, 3) varying the consensus and recall rates, and 4) reductions in the interval cancer rate compared to standard practice.

View Article and Find Full Text PDF

Background: Among childhood cancer survivors, germline rare variants in autosomal dominant cancer susceptibility genes (AD CSGs) could increase subsequent neoplasm (SNs) risks, but risks for rarer SNs and by age at onset are not well understood.

Methods: We pooled the Childhood Cancer Survivor Study and St Jude Lifetime Cohort (median follow-up = 29.7 years, range 7.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are critical regulators of gene expression in cancer biology, yet their spatial dynamics within tumor microenvironments (TMEs) remain underexplored due to technical limitations in current spatial transcriptomics (ST) technologies. To address this gap, we present STmiR, a novel XGBoost-based framework for spatially resolved miRNA activity prediction. STmiR integrates bulk RNA-seq data (TCGA and CCLE) with spatial transcriptomics profiles to model nonlinear miRNA-mRNA interactions, achieving high predictive accuracy (Spearman's ρ > 0.

View Article and Find Full Text PDF

Objective: This study employs integrated network toxicology and molecular docking to investigate the molecular basis underlying 4-nonylphenol (4-NP)-mediated enhancement of breast cancer susceptibility.

Methods: We integrated data from multiple databases, including ChEMBL, STITCH, Swiss Target Prediction, GeneCards, OMIM and TTD. Core compound-disease-associated target genes were identified through Protein-Protein Interaction (PPI) network analysis.

View Article and Find Full Text PDF