98%
921
2 minutes
20
Introduction: The Understanding New Interventions with GBM ThErapy (UNITE) study was designed to assess the effect of prophylaxis for ocular side effects (OSEs) in patients with glioblastoma receiving the antibody-drug conjugate (ADC) depatuxizumab mafodotin. UNITE (NCT03419403) was a phase 3b, open-label, randomized, exploratory study performed at 18 research sites in 5 countries.
Methods: The study enrolled adult patients with epidermal growth factor receptor-amplified, histologically confirmed, newly diagnosed supratentorial glioblastoma or grade IV gliosarcoma, and a Karnofsky Performance Status ≥70, receiving depatuxizumab mafodotin. All patients were administered depatuxizumab mafodotin during concurrent radiotherapy and temozolomide and with adjuvant temozolomide. Ninety patients were to be randomized (1:1:1) to OSE prophylactic treatments with each depatuxizumab mafodotin infusion: (a) standard steroid eye drops, (b) standard steroid eye drops plus vasoconstrictor eye drops and cold compress, or (c) enhanced steroids plus vasoconstrictor eye drops and cold compress. A Corneal Epitheliopathy Adverse Event (CEAE) scale was devised to capture symptoms, grade OSEs (scale of 0-5), and inform ADC dose modifications. The primary endpoint was the frequency of a required change in OSE management due to inadequate control of OSEs, defined as decline from baseline in visual acuity (using logarithm of the minimum angle of resolution [LogMAR] scale) or a Grade ≥3 CEAE event, in the worst eye in the first 8 weeks of treatment; unless otherwise specified, the treatment period refers to both the chemoradiation and adjuvant phases.
Results: The UNITE study was stopped early after interim analysis of separate phase III trial showed no difference in survival from depatuxizumab mafodotin. Forty patients were randomized (38 received depatuxizumab mafodotin). Overall, 23 patients experienced inadequate control of OSEs that required change in OSE management within 8 weeks of treatment, with 21 (70.0%) experiencing ≥+0.3 change on LogMAR scale in baseline-adjusted visual acuity and 12 reporting a grade ≥3 CEAE. There were no definitive differences among prophylactic treatments.
Conclusions: The premature cessation of the study precludes definitive conclusions regarding the OSE prophylaxis strategies. No new clinically significant safety findings were noted. Despite these limitations, this study highlights the need for novel assessment tools to better understand and mitigate OSEs associated with ADCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10413800 | PMC |
http://dx.doi.org/10.1159/000531142 | DOI Listing |
Clin Cancer Res
August 2024
Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
Carcinogenesis
July 2024
Department of Otolaryngology, Vanderbilt University, Nashville, USA.
Epidermal growth factor receptor (EGFR) is highly expressed in 80-90% of head and neck squamous cell carcinomas (HNSCCs), making it an ideal target for antibody-drug conjugates. Depatuxizumab mafodotin (ABT-414), is an EGFR-targeting ADC comprised of the monoclonal antibody ABT-806 conjugated to monomethyl auristatin F, a tubulin polymerization inhibitor. This study assessed the in vivo efficacy of ABT-414 in HNSCC.
View Article and Find Full Text PDFOphthalmic Res
January 2024
Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA.
Introduction: The Understanding New Interventions with GBM ThErapy (UNITE) study was designed to assess the effect of prophylaxis for ocular side effects (OSEs) in patients with glioblastoma receiving the antibody-drug conjugate (ADC) depatuxizumab mafodotin. UNITE (NCT03419403) was a phase 3b, open-label, randomized, exploratory study performed at 18 research sites in 5 countries.
Methods: The study enrolled adult patients with epidermal growth factor receptor-amplified, histologically confirmed, newly diagnosed supratentorial glioblastoma or grade IV gliosarcoma, and a Karnofsky Performance Status ≥70, receiving depatuxizumab mafodotin.
Nat Rev Clin Oncol
June 2023
Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
Antibody-drug conjugates (ADCs), a class of targeted cancer therapeutics combining monoclonal antibodies with a cytotoxic payload via a chemical linker, have already been approved for the treatment of several cancer types, with extensive clinical development of novel constructs ongoing. Primary and secondary brain tumours are associated with high mortality and morbidity, necessitating novel treatment approaches. Pharmacotherapy of brain tumours can be limited by restricted drug delivery across the blood-brain or blood-tumour barrier, although data from phase II studies of the HER2-targeted ADC trastuzumab deruxtecan indicate clinically relevant intracranial activity in patients with brain metastases from HER2 breast cancer.
View Article and Find Full Text PDFNeurooncol Adv
August 2022
Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA.
Background: EGFR targeting antibody-drug conjugates (ADCs) are highly effective against EGFR-amplified tumors, but poor distribution across the blood-brain barrier (BBB) limits their efficacy in glioblastoma (GBM) when administered systemically. We studied whether convection-enhanced delivery (CED) can be used to safely infuse ADCs into orthotopic patient-derived xenograft (PDX) models of EGFRvIII mutant GBM.
Methods: The efficacy of the EGFR-targeted ADCs depatuxizumab mafodotin (Depatux-M) and Serclutamab talirine (Ser-T) was evaluated and .