98%
921
2 minutes
20
Polypropylene film is the most important organic dielectric in capacitor technology; however, applications such as power electronic devices require more miniaturized capacitors and thinner dielectric films. The commercial biaxially oriented polypropylene film is losing the advantage of its high breakdown strength as it becomes thinner. This work carefully studies the breakdown strength of the film between 1 and 5 microns. The breakdown strength drops rapidly and hardly ensures that the capacitor reaches a volumetric energy density of 2 J/cm. Differential scanning calorimetry, X-ray, and SEM analyses showed that this phenomenon has nothing to do with the crystallographic orientation and crystallinity of the film but is closely related to the non-uniform fibers and many voids produced by overstretching the film. Measures must be taken to avoid their premature breakdown due to high local electric fields. An improvement below 5 microns will maintain a high energy density and the important application of polypropylene films in capacitors. Without destroying the physical properties of commercial films, this work employs the ALD oxide coating scheme to augment the dielectric strength of a BOPP in the thickness range below 5 μm, especially its high temperature performance. Therefore, the problem of the reduction in dielectric strength and energy density caused by BOPP thinning can be alleviated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10224400 | PMC |
http://dx.doi.org/10.3390/polym15102257 | DOI Listing |
Calcif Tissue Int
September 2025
FirmoLab, Fondazione F.I.R.M.O. Onlus and Stabilimento Chimico Farmaceutico Militare (SCFM), 50141, Florence, Italy.
X-linked hypophosphatemia (XLH) is a rare and progressive disease, due to inactivating mutations in the phosphate-regulating endopeptidase homolog X-linked (PHEX) gene. These pathogenic variants result in elevated circulating levels of fibroblast growth factor 23 (FGF23), responsible for the main clinical manifestations of XLH, such as hypophosphatemia, skeletal deformities, and mineralization defects. However, XLH also involves muscular disorders (muscle weakness, pain, reduced muscle density, peak strength, and power).
View Article and Find Full Text PDFBioelectromagnetics
September 2025
Competence Centre of Sleep Medicine, Charité -Universitaetsmedizin Berlin, Berlin, Germany.
A new whole-body exposure facility for a randomized, double-blind, cross-over provocation study investigating possible effects of 50 Hz magnetic field exposure on sleep and markers of Alzheimer's disease has been developed and dosimetrically analyzed. The exposure facility was custom-tailored for the sleep laboratory where the study was carried out and enables magnetic flux densities of up to 30 μT with a maximum field inhomogeneity of less than ± 20%. Exposure is applied fully software-controlled and in a blinded and randomized manner.
View Article and Find Full Text PDFJ Food Sci
September 2025
College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, China.
The growing consumer interest in functional and health-oriented foods prompted the incorporation of tartary buckwheat sprout flour (TBSF) into food production. The addition of TBSF enhanced the nutritional value of noodles. Research has shown that as the proportion of TBSF increased, both the water absorption rate and thermal stability of the dough improved, while formation time decreased and dough aging was inhibited.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
September 2025
Department of Chemistry, Amity University Mumbai, Maharashtra, India.
This study investigates the potential protective effects of eugenol on cecal ligation puncture (CLP) induced sepsis rat model. CLP was used to induce sepsis in rats and then treated with eugenol at doses of 25 and 50 mg/kg, i.p.
View Article and Find Full Text PDFFood Res Int
November 2025
Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, Shandong 250012, China; Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, No.105 Jiefang Road, Jinan, Shandong, 25001
The present study aimed to investigate the protective effects and underlying mechanisms of EPA-enriched phospholipids (EPA-PL) and DHA-enriched phospholipids (DHA-PL) against dexamethasone (DEX)-induced skeletal muscle atrophy both in vitro and in vivo. Results revealed that EPA-PL and DHA-PL significantly attenuated DEX-induced reduction in C2C12 myotube diameter. Additionally, supplementation with 1 % EPA-PL or 1 % DHA-PL for 6 weeks effectively alleviated DEX-induced declines in grip strength, skeletal muscle mass, and myofiber cross-sectional areas in mice.
View Article and Find Full Text PDF