Cellular Protein Aggregates: Formation, Biological Effects, and Ways of Elimination.

Int J Mol Sci

Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.

Published: May 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The accumulation of protein aggregates is the hallmark of many neurodegenerative diseases. The dysregulation of protein homeostasis (or proteostasis) caused by acute proteotoxic stresses or chronic expression of mutant proteins can lead to protein aggregation. Protein aggregates can interfere with a variety of cellular biological processes and consume factors essential for maintaining proteostasis, leading to a further imbalance of proteostasis and further accumulation of protein aggregates, creating a vicious cycle that ultimately leads to aging and the progression of age-related neurodegenerative diseases. Over the long course of evolution, eukaryotic cells have evolved a variety of mechanisms to rescue or eliminate aggregated proteins. Here, we will briefly review the composition and causes of protein aggregation in mammalian cells, systematically summarize the role of protein aggregates in the organisms, and further highlight some of the clearance mechanisms of protein aggregates. Finally, we will discuss potential therapeutic strategies that target protein aggregates in the treatment of aging and age-related neurodegenerative diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217863PMC
http://dx.doi.org/10.3390/ijms24108593DOI Listing

Publication Analysis

Top Keywords

protein aggregates
28
neurodegenerative diseases
12
protein
9
accumulation protein
8
protein aggregation
8
age-related neurodegenerative
8
aggregates
7
cellular protein
4
aggregates formation
4
formation biological
4

Similar Publications

Targeting protein misfolding in Alzheimer's disease: The emerging role of molecular chaperones.

Biomed Pharmacother

September 2025

Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma 378, Ethiopia; Division of Research & Development, Lovely Professional University, Phagwara 144411, India. Electronic address:

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterised by cognitive decline and the accumulation of misfolded proteins, including amyloid-beta and hyperphosphorylated tau, which impair neuronal function and promote cell death. These misfolded proteins disrupt proteostasis by forming toxic aggregates that exacerbate disease progression. Molecular chaperones, such as heat shock proteins, actively maintain protein homeostasis by assisting in proper folding, preventing aggregation, and promoting the clearance of misfolded proteins.

View Article and Find Full Text PDF

A synthetic nonapeptide, JAL-TA9, inhibits neuronal cytotoxicity caused by Aβ25-35 aggregation with proteolytic activity.

Neurobiol Aging

September 2025

O-Force Co., Ltd., 3454 Irino Kuroshio-cho, Hata-gun, Kochi 789-1931, Japan; Department of Pharmacology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan. Electronic address:

Due to the growing number of Alzheimer's disease (AD) patients, new drugs are urgently required. A synthetic nonapeptide, JAL-TA9 (YKGSGFRMI), derived from Transducer of ErbB-2.1 (Tob1) protein, cleaves amyloid β (Aβ) 42 with serine protease-like activity.

View Article and Find Full Text PDF

Biofilm lifestyle across different lineages of ammonia-oxidizing archaea.

ISME J

September 2025

Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.

Although ammonia-oxidizing archaea (AOA) are globally distributed in nature, growth in biofilms has been relatively little explored. Here we investigated six representatives of three different terrestrial and marine clades of AOA in a longitudinal and quantitative study for their ability to form biofilm, and studied gene expression patterns of three representatives. Although all strains grew on a solid surface, soil strains of the genera Nitrosocosmicus and Nitrososphaera exhibited the highest capacity for biofilm formation.

View Article and Find Full Text PDF

The bacterial OMP amyloids modulate α-synuclein and amyloid-β aggregation.

Int J Biol Macromol

September 2025

Institute of Cytology Russian Academy of Sciences, St. Petersburg, Russia; Laboratory of structural dynamics, stability and folding of proteins, Institute of Cytology Russian Academy of Sciences, 4 Tikhoretsky ave., 194064, St. Petersburg, Russia. Electronic address:

Growing evidence links gut microbiota to neurodegenerative diseases, yet direct molecular interactions between bacterial and host amyloid proteins remain incompletely understood. Bacterial amyloids represent an understudied yet potentially critical component of gut-brain communication in neurodegeneration. Here, we provide the first investigation of whether amyloids formed by outer membrane proteins (OMPs) of enterobacteria can modulate neurodegeneration-associated protein aggregation.

View Article and Find Full Text PDF

Anti-Aβ antibodies are important tools for identifying structural features of aggregates of the Aβ peptide and are used in many aspects of Alzheimer's disease (AD) research. Our laboratory recently reported the generation of a polyclonal antibody, pAb2AT-L, that is moderately selective for oligomeric Aβ over monomeric and fibrillar Aβ and recognizes the diffuse peripheries of Aβ plaques in AD brain tissue but does not recognize the dense fibrillar plaque cores. This antibody was generated against 2AT-L, a structurally defined Aβ oligomer mimic composed of three Aβ-derived β-hairpins arranged in a triangular fashion and covalently stabilized with three disulfide bonds.

View Article and Find Full Text PDF