98%
921
2 minutes
20
Intubated patients in intensive care units (ICUs) too frequently contract ventilator-associated pneumonia or infections. Oropharyngeal microbes are believed to play an important etiologic role. This study was undertaken to determine whether next-generation sequencing (NGS) can be used to simultaneously analyze bacterial and fungal communities. Buccal samples were collected from intubated ICU patients. Primers targeting the V1-V2 region of bacterial 16S rRNA and the internal transcribed spacer 2 (ITS2) region of fungal 18S rRNA were used. V1-V2, ITS2, or mixed V1-V2/ITS2 primers were used to prepare an NGS library. Bacterial and fungal relative abundances were comparable for V1-V2, ITS2, or mixed V1-V2/ITS2 primers, respectively. A standard microbial community was used to adjust the relative abundances to theoretical abundance, and NGS and RT-PCR-adjusted relative abundances showed a high correlation. Using mixed V1-V2/ITS2 primers, bacterial and fungal abundances were simultaneously determined. The constructed microbiome network revealed novel interkingdom and intrakingdom interactions, and the simultaneous detection of bacterial and fungal communities using mixed V1-V2/ITS2 primers enabled analysis across two kingdoms. This study provides a novel approach to simultaneously determining bacterial and fungal communities using mixed V1-V2/ITS2 primers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217707 | PMC |
http://dx.doi.org/10.3390/diagnostics13101784 | DOI Listing |
BMC Infect Dis
September 2025
Department of Laboratory Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.
Background: Serratia marcescens is an opportunistic pathogen increasingly associated with healthcare-associated infections and rising antimicrobial resistance. The emergence of multidrug-resistant (MDR) and carbapenem-resistant S. marcescens (CRSM) presents significant therapeutic challenges.
View Article and Find Full Text PDFGenome Biol
September 2025
Department of Biology, Plant-Microbe Interactions, Science for Life, Utrecht University, Utrecht, 3584CH, The Netherlands.
Background: Plant roots release root exudates to attract microbes that form root communities, which in turn promote plant health and growth. Root community assembly arises from millions of interactions between microbes and the plant, leading to robust and stable microbial networks. To manage the complexity of natural root microbiomes for research purposes, scientists have developed reductionist approaches using synthetic microbial inocula (SynComs).
View Article and Find Full Text PDFNat Immunol
September 2025
Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
CD4 T follicular helper (T) cells support tailored B cell responses against multiple classes of pathogens. To reveal how diverse T phenotypes are established, we profiled mouse T cells in response to viral, helminth and bacterial infection. We identified a core T signature that is distinct from CD4 T follicular regulatory and effector cells and identified pathogen-specific transcriptional modules that shape T function.
View Article and Find Full Text PDFNat Protoc
September 2025
Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
Structural biology is fundamental to understanding the molecular basis of biological processes. While machine learning-based protein structure prediction has advanced considerably, experimentally determined structures remain indispensable for guiding structure-function analyses and for improving predictive modeling. However, experimental studies of protein complexes continue to pose challenges, particularly due to the necessity of high protein concentrations and purity for downstream analyses such as cryogenic electron microscopy.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
September 2025
Research Group Medical Systems Biology, University Hospital Schleswig-Holstein Campus Kiel, 24105 Kiel University, Kiel, Schleswig-Holstein, Germany.
Urinary tract infections (UTIs) are among the most common bacterial infections and are increasingly complicated by multidrug resistance (MDR). While Escherichia coli is frequently implicated, the contribution of broader microbial communities remains less understood. Here, we integrate metatranscriptomic sequencing with genome-scale metabolic modeling to characterize active metabolic functions of patient-specific urinary microbiomes during acute UTI.
View Article and Find Full Text PDF