A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A Deep Learning Framework for the Prediction and Diagnosis of Ovarian Cancer in Pre- and Post-Menopausal Women. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ovarian cancer ranks as the fifth leading cause of cancer-related mortality in women. Late-stage diagnosis (stages III and IV) is a major challenge due to the often vague and inconsistent initial symptoms. Current diagnostic methods, such as biomarkers, biopsy, and imaging tests, face limitations, including subjectivity, inter-observer variability, and extended testing times. This study proposes a novel convolutional neural network (CNN) algorithm for predicting and diagnosing ovarian cancer, addressing these limitations. In this paper, CNN was trained on a histopathological image dataset, divided into training and validation subsets and augmented before training. The model achieved a remarkable accuracy of 94%, with 95.12% of cancerous cases correctly identified and 93.02% of healthy cells accurately classified. The significance of this study lies in overcoming the challenges associated with the human expert examination, such as higher misclassification rates, inter-observer variability, and extended analysis times. This study presents a more accurate, efficient, and reliable approach to predicting and diagnosing ovarian cancer. Future research should explore recent advances in this field to enhance the effectiveness of the proposed method further.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217055PMC
http://dx.doi.org/10.3390/diagnostics13101703DOI Listing

Publication Analysis

Top Keywords

ovarian cancer
16
inter-observer variability
8
variability extended
8
times study
8
predicting diagnosing
8
diagnosing ovarian
8
deep learning
4
learning framework
4
framework prediction
4
prediction diagnosis
4

Similar Publications