Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hot pepper () represents one of the most widespread functional foods of the Mediterranean diet, and is associated with a reduced risk of developing cardiovascular disease, cancer, and mental disorders. In particular, its bioactive spicy molecules, named Capsaicinoids, exhibit polypharmacological properties. Among them, Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide) is the most studied and reported in variegated scientific contributions for its beneficial effects, often linked to mechanisms of action unrelated to the activation of Transient Receptor Potential Vanilloid 1 (TRPV1). In this study, we present the application of in silico methods to Capsaicin for evaluating its inhibitory activity against the tumor-associated human () expressed CA IX and XII. In vitro assays confirmed Capsaicin inhibitory activity towards the most relevant tumor-related CA isoforms. In particular, the CAs IX and XII showed an experimental K value of 0.28 μM and 0.064 μM, respectively. Then, an A549 model of non-small cell lung cancer, typically characterized by an elevated expression of CA IX and XII, was employed to test the inhibitory effects of Capsaicin in vitro under both normoxic and hypoxic conditions. Finally, the migration assay revealed that Capsaicin [10 µM] inhibits cells from moving in the A549 cells model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10215620PMC
http://dx.doi.org/10.3390/antiox12051115DOI Listing

Publication Analysis

Top Keywords

inhibitory activity
12
capsaicin inhibitory
8
capsaicin
6
uncovering novel
4
novel capsaicin
4
inhibitory
4
activity human
4
human carbonic
4
carbonic anhydrase
4
anhydrase isoforms
4

Similar Publications

Ethnic fermented foods represent a significant repository for discovering novel probiotic entities. These fermented foods, entrenched in indigenous practices, have conserved a distinct microbiota through generations. Exploration of these fermented foods could yield microbial consortia capable of transforming human health.

View Article and Find Full Text PDF

LC-HRMS/MS-based molecular-network-guided chemical investigation of led to the isolation of seven undescribed tetrasaccharide-type resin glycosides (-). Their structures were elucidated using 1D and 2D NMR and HRESIMS analysis. Isolated resin glycosides were comprised of d-glucose, d-fucose, d-quinovose, and l-rhamnose, and these monosaccharides were partially acylated with acetyl, isobutyryl, -hexanoyl, and niloyl organic acids.

View Article and Find Full Text PDF

ATG16L1 controls mammalian vacuolar proton ATPase.

J Cell Biol

October 2025

Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.

The mechanisms governing mammalian proton pump V-ATPase function are of fundamental and medical interest. The assembly and disassembly of cytoplasmic V1 domain with the membrane-embedded V0 domain of V-ATPase is a key aspect of V-ATPase localization and function. Here, we show that the mammalian protein ATG16L1, primarily appreciated for its role in canonical autophagy and in noncanonical membrane atg8ylation processes, controls V-ATPase.

View Article and Find Full Text PDF

Circular RNA (circRNA) has been confirmed to be a regulator for septic acute kidney injury (AKI). It is reported that circ_0049271 has abnormal expression in AKI patients, but its role and mechanism in septic AKI remain unclear. Lipopolysaccharide (LPS)-stimulated HK-2 cells were served as the cellular model of sepsis-associated AKI (SAKI).

View Article and Find Full Text PDF

This study comprehensively analyses two new ruthenium(III) complexes, [RuCl(Nic)][(CH)NH]DMF, 1, and [RuCl(3-HPA)][3-HHPA](EtOH), 2, (where Nic = nicotinic acid (vitamin B3), 3-HPA = anion of a 3-hydroxypicolinic acid), as potential antimicrobial agents, highlighting their physicochemical properties, nanoparticle formation, and cytotoxic activity. The complexes were fully characterised by a single crystal X-ray diffraction technique, Fourier-transform infrared, energy-dispersive X-ray, and electron paramagnetic resonance spectroscopies. The synthesis of micro- and nanoparticles (NPs) of these complexes was performed using the liquid anti-solvent crystallisation method.

View Article and Find Full Text PDF