A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Computational Modeling of Diffusion-Based Delamination for Active Implantable Medical Devices. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Delamination at heterogeneous material interfaces is one of the most prominent failure modes in active implantable medical devices (AIMDs). A well-known example of an AIMD is the cochlear implant (CI). In mechanical engineering, a multitude of testing procedures are known whose data can be used for detailed modeling with respect to digital twins. Detailed, complex models for digital twins are still lacking in bioengineering since body fluid infiltration occurs both into the polymer substrate and along the metal-polymer interfaces. For a newly developed test for an AIMD or CI composed of silicone rubber and metal wiring or electrodes, a mathematical model of these mechanisms is presented. It provides a better understanding of the failure mechanisms in such devices and their validation against real-life data. The implementation utilizes COMSOL Multiphysics, consisting of a volume diffusion part and models for interface diffusion (and delamination). For a set of experimental data, the necessary diffusion coefficient could be derived. A subsequent comparison of experimental and modeling results showed a good qualitative and functional match. The delamination model follows a mechanical approach. The results of the interface diffusion model, which follows a substance transport-based approach, show a very good approximation to the results of previous experiments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10215766PMC
http://dx.doi.org/10.3390/bioengineering10050625DOI Listing

Publication Analysis

Top Keywords

active implantable
8
implantable medical
8
medical devices
8
digital twins
8
interface diffusion
8
computational modeling
4
modeling diffusion-based
4
delamination
4
diffusion-based delamination
4
delamination active
4

Similar Publications