98%
921
2 minutes
20
The use of bacteriophages (phages) is reemerging as a potential treatment option for antibiotic-resistant or nonresolving bacterial infections. Phages are bacteria-specific viruses that may serve as a personalized therapeutic option with minimal collateral damage to the patient or the microbiome. In 2018 we established the Israeli Phage Therapy Center (IPTC) as a shared initiative of the Hadassah Medical Center and the Hebrew University of Jerusalem, aiming to conduct all of the steps required for phage-based solutions, from phage isolation and characterization to treatments, for nonresolving bacterial infections. So far, a total of 159 requests for phage therapy arrived to the IPTC; 145 of them were from Israel and the rest from other countries. This number of registered requests is growing annually. Multidrug-resistant bacteria accounted for 38% of all phage requests. Respiratory and bone infections were the most prevalent among clinical indications and accounted for 51% of the requests. To date, 20 phage therapy courses were given to 18 patients by the IPTC. In 77.7% (n = 14) of the cases, a favorable clinical outcome of infection remission or recovery was seen. Clearly, establishing an Israeli phage center has led to an increased demand for compassionate use of phages with favorable outcomes for many previously failed infections. As clinical trials are still lacking, publishing patient data from cohort studies is pertinent to establish clinical indications, protocols, and success and failure rates. Last, workflow processes and bottlenecks should be shared to enable faster availability and authorization of phages for clinical use.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10205549 | PMC |
http://dx.doi.org/10.1093/ofid/ofad221 | DOI Listing |
Trends Microbiol
September 2025
Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark; HADAL & Nordcee, Department of Biology, University of Southern Denmark, Odense, Denmark. Electronic address:
As antimicrobial resistance threatens the future of the aquaculture industry, numerous studies have investigated the use of phages against aquaculture diseases over the past decades. Despite reports of efficient pathogen control, commercial phage solutions are sparse. We discuss limitations of phage therapy and provide suggestions for the progression towards commercially viable solutions.
View Article and Find Full Text PDFJ Control Release
September 2025
Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia; Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA. Electronic address:
Most chemotherapeutics distribute non-specifically throughout the body, resulting in off-target toxicities. Nanoparticle (NP) formulations provide a strategy to improve drug delivery by extending circulation time, protecting therapeutic agents from degradation, and enabling controlled release. However, delivering NPs effectively to solid tumors remains challenging due to the barriers within the tumor microenvironment.
View Article and Find Full Text PDFFood Res Int
November 2025
Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen 518055, China. Electronic address:
Inflammatory bowel disease (IBD) encompasses two main conditions: Crohn's disease and ulcerative colitis. The role of foodborne pathogens, often transmitted through contaminated food, is a subject of ongoing research regarding their potential involvement in IBD. The most common foodborne pathogens S.
View Article and Find Full Text PDFInt J Antimicrob Agents
September 2025
Institute for Technology Assessment and Systems Analysis (ITAS), Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany. Electronic address:
As antibiotic resistance of bacterial pathogens spreads, interest in bacteriophage (phage) therapy has soared again in many countries. Currently, there is no phage therapeutic with marketing approval and phage treatments are relegated to few patients, mostly under compassionate use schemes when approved drugs failed or are unavailable. Commercially manufactured and approved phage preparations could both expand the availability of therapeutic phages for existing, exemptional treatment schemes and result in more broadly usable phage therapeutics with marketing authorization.
View Article and Find Full Text PDFInt J Antimicrob Agents
September 2025
Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Non-Traditional Antibacterial Therapy (ESGNTA); Phage Canada, Maple, Ontario, Canada; Unity Health Toronto,
With antimicrobial resistance as a worldwide public health concern, bacteriophage (phage) therapy (PT) may help treat bacterial infections. However, given its particularities compared with traditional small molecule drugs, there are variations in how it is regulated worldwide. Regulators are key players governing PT, yet their perspectives have been largely unexplored.
View Article and Find Full Text PDF