A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Real-Time Sensor Data Profile-Based Deep Learning Method Applied to Open Raceway Pond Microalgal Productivity Prediction. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Microalgal biotechnology holds the potential for renewable biofuels, bioproducts, and carbon capture applications due to unparalleled photosynthetic efficiency and diversity. Outdoor open raceway pond (ORP) cultivation enables utilization of sunlight and atmospheric carbon dioxide to drive microalgal biomass synthesis for production of bioproducts including biofuels; however, environmental conditions are highly dynamic and fluctuate both diurnally and seasonally, making ORP productivity prediction challenging without time-intensive physical measurements and location-specific calibrations. Here, for the first time, we present an image-based deep learning method for the prediction of ORP productivity. Our method is based on parameter profile plot images of sensor parameters, including pH, dissolved oxygen, temperature, photosynthetically active radiation, and total dissolved solids. These parameters can be remotely monitored without physical interaction with ORPs. We apply the model to data we generated during the Unified Field Studies of the Algae Testbed Public-Private-Partnership (ATP UFS), the largest publicly available ORP data set to date, which includes millions of sensor records and 598 productivities from 32 ORPs operated in 5 states in the United States. We demonstrate that this approach significantly outperforms an average value based traditional machine learning method ( = 0.77 ≫ = 0.39) without considering bioprocess parameters (e.g., biomass density, hydraulic retention time, and nutrient concentrations). We then evaluate the sensitivity of image and monitoring data resolutions and input parameter variations. Our results demonstrate ORP productivity can be effectively predicted from remote monitoring data, providing an inexpensive tool for microalgal production and operational forecasting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10666538PMC
http://dx.doi.org/10.1021/acs.est.2c07578DOI Listing

Publication Analysis

Top Keywords

learning method
12
orp productivity
12
deep learning
8
open raceway
8
raceway pond
8
productivity prediction
8
monitoring data
8
data
5
orp
5
real-time sensor
4

Similar Publications