Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We performed optical genome mapping (OGM), a newly developed cytogenetic technique, for a patient with a disorder of sex development (DSD) and a 46,XX,t(9;11)(p22;p13) karyotype. The results of OGM were validated using other methods. OGM detected a 9;11 reciprocal translocation and successfully mapped its breakpoints to small regions of 0.9-12.3 kb. OGM identified 46 additional small structural variants, only three of which were detected by array-based comparative genomic hybridization. OGM suggested the presence of complex rearrangements on chromosome 10; however, these variants appeared to be artifacts. The 9;11 translocation was unlikely to be associated with DSD, while the pathogenicity of the other structural variants remained unknown. These results indicate that OGM is a powerful tool for detecting and characterizing chromosomal structural variations, although the current methods of OGM data analyses need to be improved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000531103 | DOI Listing |