A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Coccidioides undetected in soils from agricultural land and uncorrelated with time or the greater soil fungal community on undeveloped land. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Coccidioidomycosis is a typically respiratory fungal disease that, in the United States, occurs primarily in Arizona and California. In California, most coccidioidomycosis cases occur in the San Joaquin Valley, a primarily agricultural region where the disease poses a risk for outdoor workers. We collected 710 soil samples and 265 settled dust samples from nine sites in the San Joaquin Valley and examined how Coccidioides detection varied by month, site, and the presence and abundance of other fungal species. We detected Coccidioides in 89 of 238 (37.4%) rodent burrow soil samples at five undeveloped sites and were unable to detect Coccidioides in any of 472 surface and subsurface soil samples at four agricultural sites. In what is the largest sampling effort undertaken on agricultural land, our results provide no evidence that agricultural soils in the San Joaquin Valley harbor Coccidioides. We found no clear association between Coccidioides and the greater soil fungal community, but we identified 19 fungal indicator species that were significantly associated with Coccidioides detection in burrows. We also did not find a seasonal pattern in Coccidioides detection in the rodent burrow soils we sampled. These findings suggest both the presence of a spore bank and that coccidioidomycosis incidence may be more strongly associated with Coccidioides dispersal than Coccidioides growth. Finally, we were able to detect Coccidioides in only five of our 265 near-surface settled dust samples, one from agricultural land, where Coccidioides was undetected in soils, and four from undeveloped land, where Coccidioides was common in the rodent burrow soils we sampled. Our ability to detect Coccidioides in few settled dust samples indicates that improved methods are likely needed moving forward, though raises questions regarding aerial dispersal in Coccidioides, whose key transmission event likely occurs over short distances in rodent burrows from soil to naïve rodent lungs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10246812PMC
http://dx.doi.org/10.1371/journal.ppat.1011391DOI Listing

Publication Analysis

Top Keywords

coccidioides
15
agricultural land
12
san joaquin
12
joaquin valley
12
soil samples
12
settled dust
12
dust samples
12
coccidioides detection
12
rodent burrow
12
detect coccidioides
12

Similar Publications