A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

An "All-Data-on-Hand" Deep Learning Model to Predict Hospitalization for Diabetic Ketoacidosis in Youth With Type 1 Diabetes: Development and Validation Study. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Although prior research has identified multiple risk factors for diabetic ketoacidosis (DKA), clinicians continue to lack clinic-ready models to predict dangerous and costly episodes of DKA. We asked whether we could apply deep learning, specifically the use of a long short-term memory (LSTM) model, to accurately predict the 180-day risk of DKA-related hospitalization for youth with type 1 diabetes (T1D).

Objective: We aimed to describe the development of an LSTM model to predict the 180-day risk of DKA-related hospitalization for youth with T1D.

Methods: We used 17 consecutive calendar quarters of clinical data (January 10, 2016, to March 18, 2020) for 1745 youths aged 8 to 18 years with T1D from a pediatric diabetes clinic network in the Midwestern United States. The input data included demographics, discrete clinical observations (laboratory results, vital signs, anthropometric measures, diagnosis, and procedure codes), medications, visit counts by type of encounter, number of historic DKA episodes, number of days since last DKA admission, patient-reported outcomes (answers to clinic intake questions), and data features derived from diabetes- and nondiabetes-related clinical notes via natural language processing. We trained the model using input data from quarters 1 to 7 (n=1377), validated it using input from quarters 3 to 9 in a partial out-of-sample (OOS-P; n=1505) cohort, and further validated it in a full out-of-sample (OOS-F; n=354) cohort with input from quarters 10 to 15.

Results: DKA admissions occurred at a rate of 5% per 180-days in both out-of-sample cohorts. In the OOS-P and OOS-F cohorts, the median age was 13.7 (IQR 11.3-15.8) years and 13.1 (IQR 10.7-15.5) years; median glycated hemoglobin levels at enrollment were 8.6% (IQR 7.6%-9.8%) and 8.1% (IQR 6.9%-9.5%); recall was 33% (26/80) and 50% (9/18) for the top-ranked 5% of youth with T1D; and 14.15% (213/1505) and 12.7% (45/354) had prior DKA admissions (after the T1D diagnosis), respectively. For lists rank ordered by the probability of hospitalization, precision increased from 33% to 56% to 100% for positions 1 to 80, 1 to 25, and 1 to 10 in the OOS-P cohort and from 50% to 60% to 80% for positions 1 to 18, 1 to 10, and 1 to 5 in the OOS-F cohort, respectively.

Conclusions: The proposed LSTM model for predicting 180-day DKA-related hospitalization was valid in this sample. Future research should evaluate model validity in multiple populations and settings to account for health inequities that may be present in different segments of the population (eg, racially or socioeconomically diverse cohorts). Rank ordering youth by probability of DKA-related hospitalization will allow clinics to identify the most at-risk youth. The clinical implication of this is that clinics may then create and evaluate novel preventive interventions based on available resources.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10394604PMC
http://dx.doi.org/10.2196/47592DOI Listing

Publication Analysis

Top Keywords

dka-related hospitalization
16
lstm model
12
deep learning
8
model predict
8
diabetic ketoacidosis
8
youth type
8
type diabetes
8
predict 180-day
8
180-day risk
8
risk dka-related
8

Similar Publications