A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Next-generation materials for RNA-lipid nanoparticles: lyophilization and targeted transfection. | LitMetric

Next-generation materials for RNA-lipid nanoparticles: lyophilization and targeted transfection.

J Mater Chem B

State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China.

Published: June 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

RNA, including mRNA, siRNA and miRNA, is part of a new class of patient treatments that prevent and treat several diseases. As an alternative to DNA therapy using plasmid DNA, RNA functions in the cellular cytosol, avoiding the potential risks of insertion into patient genomes. RNA drugs, including mRNA vaccines, need carrier materials for delivery into the patient's body. Several delivery carriers of mRNA, such as cationic polymers, lipoplexes, lipid-polymer nanoparticles and lipid nanoparticles (LNPs), have been investigated. For clinical applications, one of the most commonly selected types of RNA delivery carrier is LNPs, which are typically formed with (a) ionizable lipids, which bind to RNA; (b) cholesterol for stabilization; (c) phospholipids to form the LNPs; and (d) polyethylene glycol-conjugated lipids to prevent aggregation and provide stealth characteristics. Most RNA-LNP research has been devoted to achieving highly efficient RNA expression and . It is also necessary to study the extended storage of RNA-LNPs under mild conditions. One of the most efficient methods to store RNA-LNPs for a long time is to prepare freeze-dried (lyophilized) RNA-LNPs. Future research should include investigating LNP materials for the development of freeze-dried RNA-LNPs using optimal lipid components and compositions with optimal cryoprotectants. Furthermore, the development of sophisticated RNA-LNP materials for targeted transfection into specific tissues, organs or cells will be a future direction in the development RNA therapeutics. We will discuss the prospects for the development of next-generation RNA-LNP materials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3tb00308fDOI Listing

Publication Analysis

Top Keywords

targeted transfection
8
including mrna
8
rna-lnp materials
8
rna
7
next-generation materials
4
materials rna-lipid
4
rna-lipid nanoparticles
4
nanoparticles lyophilization
4
lyophilization targeted
4
transfection rna
4

Similar Publications