98%
921
2 minutes
20
Air quality and climate change are substantial and linked sustainability challenges, and there is a need for improved tools to assess the implications of addressing these challenges together. Due to the high computational cost of accurately assessing these challenges, integrated assessment models (IAMs) used in policy development often use global- or regional-scale marginal response factors to calculate air quality impacts of climate scenarios. We bridge the gap between IAMs and high-fidelity simulation by developing a computationally efficient approach to quantify how combined climate and air quality interventions affect air quality outcomes, including capturing spatial heterogeneity and complex atmospheric chemistry. We fit individual response surfaces to high-fidelity model simulation output for 1525 locations worldwide under a variety of perturbation scenarios. Our approach captures known differences in atmospheric chemical regimes and can be straightforwardly implemented in IAMs, enabling researchers to rapidly estimate how air quality in different locations and related equity-based metrics will respond to large-scale changes in emission policy. We find that the sensitivity of air quality to climate change and air pollutant emission reductions differs in sign and magnitude by region, suggesting that calculations of "co-benefits" of climate policy that do not account for the existence of simultaneous air quality interventions can lead to inaccurate conclusions. Although reductions in global mean temperature are effective in improving air quality in many locations and sometimes yield compounding benefits, we show that the air quality impact of climate policy depends on air quality precursor emission stringency. Our approach can be extended to include results from higher-resolution modeling and also to incorporate other interventions toward sustainable development that interact with climate action and have spatially distributed equity dimensions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10197161 | PMC |
http://dx.doi.org/10.1021/acsenvironau.2c00054 | DOI Listing |
J Healthc Sci Humanit
January 2024
Atlanta VA Medical Center, Atlanta, GA.
The 2019 novel coronavirus disease (COVID-19) has brought to the forefront racial disparities in health outcomes across the US, but there is limited formal analysis into factors associated with these disparities. In-depth examination of COVID-19 disparities has been challenging due to inconsistent case definition, isolation procedures, and incomplete racial and medical information. As of June 2020, over 14,000 (25%) confirmed COVID-19 cases in Georgia did not have racial information.
View Article and Find Full Text PDFIndoor Air
January 2025
National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.
Background/objectives: Respiratory viruses circulate year-round and can spread indoors via inhalation of airborne particles. Effective ventilation and filtration may reduce transmission, particularly in school settings where children and staff spend significant time. This study examines the impact of indoor air quality (IAQ) and ventilation in schools on respiratory virus detection.
View Article and Find Full Text PDFEnviron Epidemiol
October 2025
Department of Psychiatry and Behavioral Health, The Ohio State University, Ohio.
Background: Prospective studies suggest that prenatal exposure to chemical neurotoxicants and maternal stress increase risk for psychiatric problems. However, most studies have focused on childhood outcomes, leaving adolescence-a critical period for the emergence or worsening of psychiatric symptoms-relatively understudied. The complexity of prenatal coexposures and adolescent psychiatric comorbidities, particularly among structurally marginalized populations with high exposure burdens, remains poorly understood.
View Article and Find Full Text PDFGlob Health Action
December 2025
Department of Otolaryngology, Head & Neck Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi Province, China.
Background: Allergic rhinitis (AR) is an increasingly prominent global public health issue, where air pollution significantly contributes to its rising incidence. Although numerous studies have explored the link between air pollution and AR pathogenesis, comprehensive summaries are still limited.
Objective: This study performs a bibliometric analysis to identify research hotspots and emerging trends, offering insights into AR prevention and management.
Mol Nutr Food Res
September 2025
Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Nishitokyo, Tokyo, Japan.
Health hazards caused by air pollutants are increasing worldwide (SDGs 3.9), but no established prevention methods exist. Recently, we showed that intraperitoneal administration of epigallocatechin gallate (EGCG) prevents air pollutant-induced acute lung injury.
View Article and Find Full Text PDF