Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Inflammatory bowel diseases (IBD) are a worldwide health problem and mainly affect young people, consequently affecting the workforce. Available treatments are often associated with side effects, and new therapeutic options are needed. For centuries, plants have represented important substrates in the field of drug development. () is a plant whose pharmaceutical potential has been described, and may have biological activity relevant to the treatment of IBD symptoms.

Aim: To investigate the activity of keto-alcoholic extracts of with respect to ameliorating the inflammatory and nociceptive symptoms of acute experimental colitis in mice.

Methods: Keto-alcoholic extracts of leaves and bark were administered to male and female Swiss mice weighing 25 g to 30 g ( = 8 male mice and 8 female mice). The effect of these extracts was observed in an acetic acid-induced acute experimental model of colitis with regard to antinociception/analgesia and inflammatory tissue damage. Recorded macroscopic indices included the Wallace score and the colon weight obtained using a precision scale. Mechanical hyperalgesia was determined using an electronic analgesimeter. Behavior related to overt pain was determined by quantifying the number of writhing instances within 20 min of administration of acetic acid. Molecular docking was performed using human and murine cyclooxygenase-2 (COX-2) with 3 flavonoids (ellagic acid, kaempferol, and quercetin) on the AutoDock Vina software. Analysis of variance followed by Tukey's posttest was used with < 0.05 indicating significance.

Results: In this murine model of colitis, administration of extracts from ameliorated acetic acid-induced writhing and colitis-associated inflammatory pain. These improvements may be attributable to the reduction in edema, inflammation ( ulcers, hyperemia, and bowel wall damage), and the intensity of abdominal hyperalgesia. The keto-alcoholic extracts of leaves and bark administered at a dose of either 100 mg/kg or 300 mg/kg significantly reduced the number of writhing events when compared to the negative control ( < 0.05). Additionally, extracts of bark also performed better than Dipyrone. Leaf extracts administered at 10 mg/kg, 30 mg/kg, and 100 mg/kg and bark extracts administered at 30 mg/kg significantly reduced or prevented the development of edema in the colon of treated mice, while mesalazine did not. Moreover, using molecular docking, we observed that the flavonoids present in extracts bind to COX-2, an event not unique to ellagic acid.

Conclusion: The results of this study demonstrate a potential novel application of extracts for the reduction of inflammation and promotion of antinociception/analgesia as demonstrated by our findings in a murine model of colitis. These findings were also corroborated by analyses, and suggest that extracts may be a promising therapeutic agent in the treatment of IBD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10198052PMC
http://dx.doi.org/10.3748/wjg.v29.i17.2628DOI Listing

Publication Analysis

Top Keywords

keto-alcoholic extracts
12
model colitis
12
extracts
11
treatment ibd
8
acute experimental
8
extracts leaves
8
leaves bark
8
bark administered
8
acetic acid-induced
8
number writhing
8

Similar Publications

alleviates intestinal damage by modulating cyclooxygenase-2: and evaluation in a colitis model.

World J Gastroenterol

May 2023

Programa Multicêntrico de Pós-graduação em Biquímica e Biologia Molecular - Setor Palotina, Universidade Federal do Paraná, Palotina 85.950-000, Paraná, Brazil.

Background: Inflammatory bowel diseases (IBD) are a worldwide health problem and mainly affect young people, consequently affecting the workforce. Available treatments are often associated with side effects, and new therapeutic options are needed. For centuries, plants have represented important substrates in the field of drug development.

View Article and Find Full Text PDF