A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Mechanism of cognitive impairment induced by d-galactose and l-glutamate through gut-brain interaction in tree shrews. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

d-Galactose (d-gal) and l-glutamate (l-glu) impair learning and memory. The mechanism of interaction between the gut microbiome and brain remains unclear. In this study, a model of cognitive impairment was induced in tree shrews by intraperitoneal (ip) injection of d-gal (600 mg/kg/day), intragastric (ig) administration with l-glu (2000 mg/kg/day), and the combination of d-gal (ip, 600 mg/kg/day) and l-glu (ig, 2000 mg/kg/day). The cognitive function of tree shrews was tested by the Morris water maze method. The expression of Aβ1-42 proteins, the intestinal barrier function proteins occludin and P-glycoprotein (P-gp), and the inflammatory factors NF-κB, TLR2, and IL-18 was determined by immunohistochemistry. The gut microbiome was analyzed by 16SrRNA high-throughput sequencing. After administering d-gal and l-glu, the escape latency increased (p < .01), and the times of crossing the platform decreased (p < .01). These changes were greater in the combined administration of d-gal and l-glu (p < .01). The expression of Aβ1-42 was higher in the perinuclear region of the cerebral cortex (p < .01) and intestinal cell (p < .05). There was a positive correlation between the cerebral cortex and intestinal tissue. Moreover, the expression of NF-κB, TLR2, IL-18, and P-gp was higher in the intestine (p < .05), while the expression of occludin and the diversity of gut microbes were lower, which altered the biological barrier of intestinal mucosal cells. This study indicated that d-gal and l-glu could induce cognitive impairment, increase the expression of Aβ1-42 in the cerebral cortex and intestinal tissue, decrease the gut microbial diversity, and alter the expression of inflammatory factors in the mucosal intestines. The dysbacteriosis may produce inflammatory cytokines to modulate neurotransmission, causing the pathogenesis of cognitive impairment. This study provides a theoretical basis to explore the mechanism of learning and memory impairment through the interaction of microbes in the gut and the brain.

Download full-text PDF

Source
http://dx.doi.org/10.1002/syn.22274DOI Listing

Publication Analysis

Top Keywords

tree shrews
12
d-gal 600 mg/kg/day
8
l-glu 2000 mg/kg/day
8
mechanism cognitive impairment
4
cognitive impairment induced
4
induced d-galactose
4
d-galactose l-glutamate
4
l-glutamate gut-brain
4
gut-brain interaction
4
interaction tree
4

Similar Publications