Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The objective of the current study is the formulation development and manufacturing of solid self-emulsifying drug delivery systems (HME S-SEDDS) via a single-step continuous hot-melt extrusion (HME) process. For this study, poorly soluble fenofibrate was selected as a model drug. From the results of pre-formulation studies, Compritol® HD5 ATO, Gelucire® 48/16, and Capmul® GMO-50 were selected as oil, surfactant and co-surfactant respectively for manufacturing of HME S-SEDDS. Neusilin® US2 was selected as a solid carrier. The design of experiments (response surface methodology) was employed to prepare formulations via a continuous HME process. The formulations were evaluated for emulsifying properties, crystallinity, stability, flow properties and drug release characteristics. The prepared HME S-SEDDS showed excellent flow properties, and the resultant emulsions were stable. The globule size of the optimized formulation was 269.6 nm. The DSC and XRD studies revealed the amorphous nature of the formulation and FTIR studies showed no significant interaction between fenofibrate and excipients. The drug release studies showed significant (p < 0.05) improvement in solubility compared to the pure drug (DE = 45.04 for the optimized formulation), as >90% of drug release was observed within 15 min. The stability studies for the optimized formulation were conducted for 3 months at 40 °C/75% RH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10429704PMC
http://dx.doi.org/10.1016/j.ijpharm.2023.123055DOI Listing

Publication Analysis

Top Keywords

hme s-sedds
16
drug release
12
solid self-emulsifying
8
self-emulsifying drug
8
drug delivery
8
delivery systems
8
systems hme
8
s-sedds single-step
8
hot-melt extrusion
8
response surface
8

Similar Publications

The objective of the current study is the formulation development and manufacturing of solid self-emulsifying drug delivery systems (HME S-SEDDS) via a single-step continuous hot-melt extrusion (HME) process. For this study, poorly soluble fenofibrate was selected as a model drug. From the results of pre-formulation studies, Compritol® HD5 ATO, Gelucire® 48/16, and Capmul® GMO-50 were selected as oil, surfactant and co-surfactant respectively for manufacturing of HME S-SEDDS.

View Article and Find Full Text PDF

Introduction: Self-emulsifying drug delivery systems (SEDDS) are a promising strategy to improve the oral bioavailability of poorly water-soluble drugs (PWSD). However, poor drug loading capacity and formulation instability are the main setbacks of traditional SEDDS. The use of polymeric precipitation inhibitors was shown to create supersaturable SEDDS with increased drug loads, and their solidification can help to overcome the instability challenge.

View Article and Find Full Text PDF