Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A.D. is a common disease among other neurodegenerative disorders primarily developing due to amyloid-β (Aβ) neurotoxicity derived from the amyloid-β protein precursor (AβPP). The amyloid precursor-like proteins 1 and 2 (APP1 and APLP2) biochemically behave similarly in many aspects to AβPP. We, therefore, proposed to test WGX-50 and Alpha-M for their interaction mechanism with APLP1 and APLP2 because both these drug candidate compounds previously showed inhibition of Aβ aggregation. We employed a comparative atomic investigation on Alpha-M and WGX-50 in complex with novel targets, , APLP1 and APLP2, using biophysical and molecular simulation methods. The docking score was -6.83 kcal mol for Alpha-M-APLP1, -8.41 kcal mol for WGX-50-APLP1, -7.02 kcal mol for Alpha-M-APLP2 and -8.25 kcal mol for the WGX-50-APLP2 complex. Our results also elaborate that in the case of their interaction with both APLP1 and APLP2, the WGX-50 complex exhibits better stability than the APLP1/2-Alpha-M complexes during simulation. Furthermore, WGX50 in both APLP1 and APLP2 stabilized the internal flexibility upon binding in contrast to the Alpha-M complexes. The data showed that the BFE for Alpha-M-APLP1 was calculated to be -27.38 ± 0.93 kcal mol, for WGX-50-APLP1 -39.65 ± 0.95 kcal mol, for Alpha-M-APLP2 -24.80 ± 0.63 kcal mol while for WGX-50-APLP2 the BFE was -57.16 ± 1.03 kcal mol respectively. These results highlight that APLP2-WGX50 has greater binding energies in all four systems. PCA and FEL analysis further revealed variations in the dynamic behavior of these complexes. Overall, our findings demonstrate that WGX50 potentially acts as a more potent inhibitor for APLP1 and APLP2 than Alpha-M and thus shows the diverse pharmacological potential of WGX50. Due to its stable binding interaction, WGX50 might be a suitable candidate drug compound for targeting these precursors under pathological conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cp06083cDOI Listing

Publication Analysis

Top Keywords

kcal mol
32
aplp1 aplp2
24
wgx-50 complex
8
kcal
8
mol
8
mol wgx-50-aplp1
8
mol alpha-m-aplp2
8
mol wgx-50-aplp2
8
aplp2
7
aplp1
6

Similar Publications

The research employed zirconyl oxychloride as a catalyst in a reaction involving pyrazole aldehyde, (thio)urea, and acetyl acetone to establish an aqueous approach for synthesizing 3,4-dihydropyrimidinone derivatives (compounds 4a-j) with potential claims as antidiabetic agents. FT-IR, HR-MS, H NMR and C NMR were employed to analyze the synthesized compounds. The HOMO-LUMO analysis was performed to evaluate the stability of the synthesized derivatives.

View Article and Find Full Text PDF

PTTG1 as a common promising target for PCOS, Ovarian Cancer, and Major Depressive Disorder patients.

Comput Biol Chem

September 2025

Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India. Electronic address:

Women are susceptible to hormonal imbalances and endocrine-related disorders such as Polycystic Ovary Syndrome (PCOS), Ovarian Cancer (OC), and Major Depressive Disorder (MDD). This study aims to identify gene-level interconnections among these conditions using omics-based bioinformatic approaches. Publicly available GEO datasets, viz.

View Article and Find Full Text PDF

Theoretical Study of Ru-Catalyzed Decarboxylative Heteroarylation of Aryl Carboxylic Acids.

J Org Chem

September 2025

State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.

The -di(2-pyridyl)arenes, featuring a unique structure, hold significant promise for applications in fluorescent probes, synthetic nanoparticle stabilizers, and chemical synthesis. The mechanism of Ru-catalyzed decarboxylation and heteroarylation reactions of aryl carboxylic acids to access -dipyridylarenes was elucidated using DFT calculations, which involved C-H bond activation, oxidative addition, reductive elimination, and decarboxylation processes to form -di(2-pyridyl)arenes. The rate-determining step of the reaction is the second reductive elimination step with an energy barrier of 27.

View Article and Find Full Text PDF

Acetylesterase, produced by , plays a crucial role in deacetylating hemicellulose during pulp production. Thermostable variants of this enzyme, although rare, can significantly enhance industrial efficiency by retaining activity at high temperatures. This research aims to design a thermostable variant of acetylesterase from (EC 3.

View Article and Find Full Text PDF

This study aimed to evaluate the antidepressant potential of Nitazoxanide (NTZ), an antiprotozoal drug with known anti-inflammatory and neuroprotective properties, in a chronic unpredictable mild stress (CUMS)-induced mice model of depression. NTZ was administered at doses of 75, 150, and 300 mg/kg, and its effects were assessed through a series of behavioral tests, including the forced swim test, tail suspension test, actophotometer test, and social interaction test. NTZ treatment at 150 and 300 mg/kg significantly improved behavioral and biochemical outcomes, relieving depressive-like symptoms and restoring neurochemical balance.

View Article and Find Full Text PDF