Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Dihydrofolate reductase (DHFR) is a key enzyme involved in the folate pathway that has been heavily targeted for the development of therapeutics against cancer and bacterial and protozoa infections amongst others. Despite being an essential enzyme for Mycobacterium tuberculosis (Mtb) viability, DHFR remains an underexploited target for tuberculosis (TB) treatment. Herein, we report the preparation and evaluation of a series of compounds against Mtb DHFR (MtbDHFR). The compounds have been designed using a merging strategy of traditional pyrimidine-based antifolates with a previously discovered unique fragment hit against MtbDHFR. In this series, four compounds displayed a high affinity against MtbDHFR, with sub-micromolar affinities. Additionally, we determined the binding mode of six of the best compounds using protein crystallography, which revealed occupation of an underutilised region of the active site.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cmdc.202300240 | DOI Listing |