Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Facultative anaerobic bacteria such as Escherichia coli have two αβ heterotetrameric trifunctional enzymes (TFE), catalyzing the last three steps of the β-oxidation cycle: soluble aerobic TFE (EcTFE) and membrane-associated anaerobic TFE (anEcTFE), closely related to the human mitochondrial TFE (HsTFE). The cryo-EM structure of anEcTFE and crystal structures of anEcTFE-α show that the overall assembly of anEcTFE and HsTFE is similar. However, their membrane-binding properties differ considerably. The shorter A5-H7 and H8 regions of anEcTFE-α result in weaker α-β as well as α-membrane interactions, respectively. The protruding H-H region of anEcTFE-β is therefore more critical for membrane-association. Mutational studies also show that this region is important for the stability of the anEcTFE-β dimer and anEcTFE heterotetramer. The fatty acyl tail binding tunnel of the anEcTFE-α hydratase domain, as in HsTFE-α, is wider than in EcTFE-α, accommodating longer fatty acyl tails, in good agreement with their respective substrate specificities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.str.2023.04.011DOI Listing

Publication Analysis

Top Keywords

membrane-binding properties
8
human mitochondrial
8
trifunctional enzymes
8
fatty acyl
8
structural basis
4
basis membrane-binding
4
properties e coli
4
e coli anaerobic
4
anaerobic human
4
mitochondrial β-oxidation
4

Similar Publications

Ferlins are vesicle trafficking proteins composed of folded C2 domains conjugated by linkers which are largely disordered. Although a role for the C2 domains as calcium sensors has been established it remains unclear whether the linkers function beyond acting as passive spacers. We examined the C2A-C2B linker sequences of vertebrate ferlins and found both putative short linear motifs (SLiMs) as well as membrane binding sequences for members of the protein family.

View Article and Find Full Text PDF

CPNE5, a member of the Copine family, is characterized by its membrane-binding properties and functions as a regulatory modulator of intracellular signaling through the spatial redistribution of interacting protein partners. Emerging evidence has demonstrated that CPNE3 exerts cardioprotective effects via anti-apoptotic activity in myocardial ischemia-reperfusion injury models. However, the functional role of CPNE5 in cardiac pathology remains unclear.

View Article and Find Full Text PDF

Bacterial cell morphogenesis is controlled by the synthesis and organization of peptidoglycan and driven by multi-protein complexes such as the divisome and elongasome. Here we investigate the role of the DivIVA homologue, Wag31, the elongasome scaffold essential for polar growth in . Conditional depletion of Wag31 results in viable but coccoid-shaped cells, showing that Wag31 is essential for rod shape maintenance.

View Article and Find Full Text PDF

Hydrophobins are a family of small fungal proteins that self-assemble at hydrophobic-hydrophilic interfaces. Hydrophobins not only play crucial roles in filamentous fungal growth and development but also have attracted substantial attention due to their unique material properties. Structural characterization of class I and class II hydrophobins to date has been limited to a handful of proteins.

View Article and Find Full Text PDF

α-Synuclein (αSyn), an intrinsically disordered protein implicated in Parkinson's disease, is thought to initiate aggregation by binding to cellular membranes. Previous studies suggest that anionic lipids are necessary for this binding. However, these studies largely focused on unmodified αSyn, while physiological αSyn is N-terminally acetylated (NTA).

View Article and Find Full Text PDF