A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Latitudinal variation in the functional response of Quercus suber seedlings to extreme drought. | LitMetric

Latitudinal variation in the functional response of Quercus suber seedlings to extreme drought.

Sci Total Environ

Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Profesor García González s/n, Sevilla 41012, Spain. Electronic address:

Published: August 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Many plant species are being threatened by increasingly drought conditions due to current climate change at planetary scale. This global trend is leading to the scientific community to investigate the potential role of local adaptations through intraspecific differences in functional traits that may boost conservation strategies by modulating the plant responses to reduced water availability. We assessed under controlled conditions the effect of four different drought intensities on the survival time and morphological traits of Quercus suber seedlings collected from nine populations covering the complete latitudinal distribution of the species. Functional morphological traits related to biomass allocation and leaf and root display were analyzed. We then related these traits with the survival time after a terminal desiccation, used as a drought-resistance proxy and expressed as survival time without watering. Abundant watering availability allowed seedlings to survive for a longer period compared to drier conditions. Further, all morphological traits differed across watering levels, showing a very plastic response. Acorns from southern latitudes produced very large seedlings compared to those gathered from northern latitudes. However, the larger biomass implied higher evaporative water loss, inducing lower survival of southern populations under extreme drought conditions. We further found a clear trend toward maximizing those traits related with belowground growth (i.e., root surface area, root average diameter and root volume) in southern populations aimed to increase water uptake, overcoming the most limiting factor for plant growth in that area. Our results support that increased root development allow cork oak to maintain its functioning after being subjected to damage caused by reduced water availability, whereas high aerial biomass allocation is a handicap for survival under drought stress conditions. This study identifies drought-resistant populations and morphological traits related to drought resistance, which can be applied to improve restoration actions under a warmer climate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.164122DOI Listing

Publication Analysis

Top Keywords

morphological traits
16
survival time
12
quercus suber
8
suber seedlings
8
extreme drought
8
drought conditions
8
reduced water
8
water availability
8
biomass allocation
8
southern populations
8

Similar Publications